Improving the Productivity of hybrid rice seed through application Nitrogen, Potassium splitting and spraying of different sources of hormone

M. I. Abo Youssef^{2,*}, R. A. EL-Refaey¹, A. Y. Shaheen², and M. A. Gomaa²

¹ Agronomy Department, Faculty of Agriculture, Tanta University, Tanta, Egypt. ² Rice research section, Field Crops Research Institute, Agricultural Research Center, Egypt.

* Corresponding author E-mail: <u>abo-yosef709@yahoo.com</u> (M. Abo Yousef)

ABSTRACT:

This study was conducted at the Farm of Rice Research Department, FCRI, ARC Egypt, during 2020 and 2021 summer seasons, to study the effect of apply the nitrogen, potassium splitting and growth regulators on hybrid rice seed yield for the parental lines of Egyptian hybrid No. 1., like, IR69625A line and Giza 178 R, were used to cultivate on 20th of April for A line in one time With three intervals for R line to get good synchronization and in split-spilt plot design with three replications The main plots were devoted to the three nitrogen applications (N), While sub-plots were occupied at the three potassium applications (K) and the three growth regulators applications (GR) was arranged at random in the sub-subplots, the subplot was (4.5 x 5m = 22.5 m2). The data were recorded on growth characters i.e., Plant height, days to heading, flag leaf area, yield characters i.e., Number of panicles/plant, Panicle length, Seed set %, panicle weight and grain yield. The results showed that, the morphological and seed yield characters affected by splitting method for Nitrogen and Potassium fertilizer, as well as, different sources of hormones, from the results it could be concluded that., high gram yield of hybrid rice seed when application, of Nitrogen fertilizer in three splits, potassium in two splits (basal and foliar) and spray by GA₃, gave seed yield of (3.09 t/ha. and 3.015 t/ha.) during the two successive seasons.

Keywords: Hybrid rice; GA₃, Seed production; Nitrogen and Potassium fertilizer.

INTRODUCTION

Rice (*Oryza sativa*, L.) is one of the most important agricultural food crops for more than half of the world population Moreover, it's a very important cereal crop in Egypt for either consumption and or export. The total cultivated area by rice is about 1.182 million feddan which produced about 4.560.000 million tons of paddy rice (EAS 2021). In spite of rice is salt sensitive crop, but it's considered as reclamation crop for saline soil because of its flooding condition.

Highly productivity of rice depends on high seed quality and apply of optimum cultural practices, so as to increase the national production it could be increase the total area covered with high seed quality. High quality seed reflects on the increasing national income Anonymous. 2009.

Plant growth regulators (PGRs) are organic compounds that can promote, inhibitor modify physiological processes of plants. Growth regulators like GA₃, NAA and chemicals like K₂PO₄ along with boron as foliar spray play an important role to improve panicle emergence, seed set percent and seed yield of hybrid rice seed production. Application of GA₃ at 5 per cent, panicle emergence is recommended in hybrid seed production, to improved plant height, flag leaf angle, panicle exsertion, pollination, synchronization in flowering and seed set percentage (Wu et al., 2011). Gibberellins (GA₃) are a large family of natural products that regulate many developmental plants, including processes in seed germination; stem elongation, and induction of flowering. Over the years, more than a hundred GA3 have been identified from organisms, amongst, which only few compounds are available in large quantities such as the relatively cheap natural derived phyto hormone named gibberellic acid (GA₃), Tian et al. (2017).

Also, potassium is one of the three major plant nutrients; the application to rice crop has received least attention, even though potassium accounts for a greater share of total nutrients removed from the soil by rice crop. Response of rice to applied potassium is highly variable (Vidya, 2011). Potassium plays an important role in rice plant nutrition. Continuous application of potassium improves all soil properties and perhaps the use of higher rates of nitrogen. Application of potassium along with nitrogen has become very necessary due to intensive agriculture with high yielding varieties. Therefore, the present study aimed to study the effect of apply the nitrogen and potassium splitting, as will as, growth regulator on hybrid rice seed

production of the parental lines of Egyptian hybrid No. 1.

MATERIALS AND METHODS

This study was carried out at the experimental Farm of Sakha Agriculture Research Station, Kafr EL-Sheikh Governorate, Egypt, during the two successive summer seasons of 2020 and 2021. The main objectives are to determine the optimum time for add nitrogen, potassium fertilizers and growth regulators (as foliar application) on growth characters and yield and its components of hybrid rice seed productions.

The materials under study included two parental lines IR69625A; (female line) with abortive sterility and Giza178R (restorer line) to produce F1 hybrid seed for promising hybrid SK.2034H (IR69625A / Giza 178 R) The Experimental design was a split-split plot design with three replications The main plots devoted to the three nitrogen were applications (N), While sub-plots were occupied at the three potassium applications (K) and the three growth regulators applications (GR) was arranged at random in the sub-subplots, the subplot was ($4.5 \times 5m =$ 22.5 m²).

Three nitrogen applications were added 150 kg N/ha., as urea 46%) at 20 days from transplanting (N1). 2) Half at basal (B) + Half at 20 days from transplanting (N2). 3) Onethird at basal (B) + one-third at 20 days from transplanting + one-third at 40 days from transplanting (N₃). The sub-plots were occupied by the three treatments of potassium applications at the rate of (60 kg K₂O/ha, by potassium sulphate 48% K2O). 1) One time, as basal application 60kg/ha (K1). 2) Half was added at basal (B) and half after 30 days from transplanting (K2), 3) 20kg/ha was added at basal (B) and 20kg/ha after 30 days from transplanting and 20 kg/ha after 50 days from transplanting (K₃). Where the sub-plots were occupied by the three treatments of growth regulators (Leaf foliar) application at 1) Indole Acetic Acid (IAA) (30 g/ha.) (100% concentration) (GR1). 2) Ascorbic Acid (30 g/ha.) (100% concentration). (GR₂) and 3) Gibberellins (GA3) (30 g/ha.) (100%) concentration). (GR₃) (40% concentration at 15% from flowering and the 60% second at 45% from flowering). Other cultural practices were done according the recommendation of growing hybrid rice seed productivity (RRTC, 2020). The data were recorded according to Standard Evaluation System (SES) of IRRI (2008) for all the studied characters i.e plant

height (cm), panicle length (cm), panicle weight (g), number of panicles/hill, number of filled grains/panicle (grain), number of total grains/panicle (grain), seed set (%), 1000-grain weight(g), panicle exsertion (%), grain yield/hill (g) and harvest index (%).All the data collected were subjected to the analysis of variance according to Gomez and Gomez, 1984. Treatment means were compared by Duncan's multiple range test (Duncan, 1955). All statistical analysis was performed using analysis of variance technique by means of "COSTAT" computer software package.

RESULTS AND DISCUSSION

The results presented in Table (1) showed that, the effect of Nitrogen, Potassium and leaf foliar applications, as well as, their interactions with yield characters, the number of filled grains/panicles, total grains/panicle and Seed set % were highly affected by nitrogen application during both seasons.

The highest values for Number of Filled grains/panicles were (64.18 and 64.37 grain) with the second Nitrogen application (N₂) and the lowest values were (55.81 and 56.74 grain) with the Nitrogen application (N1) during both seasons, respectively. Also the highest values for Number of total grains/panicle were (164.12 and 176.05 gram) with the second Nitrogen application (N₂) during both seasons, respectively. The lowest values were (154.01 and 142.79 grain) with the Nitrogen application (N1) during 2020 and 2021 seasons, respectively. The highest values for Seed set (%) were (35.45 and 36.60%) with first dose of Nitrogen application (N1) during both seasons, respectively. The lowest values were (32.32 and 31.89%) N2 treatment of Nitrogen application (N₂) during 2020 and 2021 seasons, respectively. These results indicated that Seed set (%) were highly affected by Nitrogen applications. The results were agreement with Zhang et al (2021), The use of less chemical N fertilizer and a higher planting density could enhance the sustainability of the grain yield and reduce fertilizer loss via a novel crop management scheme for perennial rice.

Also, the data in Table (1) indicated that, there were significant differences among Potassium applications for Number of Filled grains/panicles, total grains/panicle and Seed set, in both seasons. The highest values were obtained from third Potassium application dose (K₃) the highest values for Number of Filled grains/panicles and Seed set were (68.88 and 66.40grain) and (36.09 and 36.62%) in both seasons, respectively. Also the highest values

Abo Yousef et al

for Number of grains/panicle were (166.55 and 156.77grain) with the second potassium application dose (K₂) in both seasons, respectively. But the lowest values were (54.33 and 53.42grain), (146.53 and 150.81grain) and (30.62 and 31.38%) with the first dose of Potassium application (K1) during 2020 and 2021 seasons, respectively. These results showed that, the traits of Seed set were highly affected by applied different Potassium application. The results were in case agreement with these obtained by Kalala et al (2017) recommended that, 10 kg P/ha and 50 kg K/ha be used as optimum rate for rice production in P and K deficient soils of Kilombero valley.

Moreover results in Table (1) indicated that, there were significant differences among the Leaf foliar applications of hormones for Number of total grains/panicle, Number of fertile grains/panicle and Seed set during both seasons. The highest values for Number of total grains/panicle and Seed set were (68.33 and 66.66grain) and (35.66 and 36.78%) at third Leave foliar application (GA₃) in both seasons, respectively. Also the highest values for Number of total grains/panicle were (162.31 and 156.41grain) with the first Leaf foliar application (IAA) in both seasons, respectively. But, the lowest values for Number of total grains/panicle and Seed set were (53.85 and 54.62grain) and (31.20 and 31.52 %) at first Leaf foliar application (IAA) during 2020 and 2021 seasons, respectively. Also the lowest values for Number of total grains/panicle were (155.38 and 149.76grain) with the third Leaf foliar application (GA3) in both seasons, respectively. These results indicated that highly affected by applied different.

Data in Table (2) showed that, the interactions between nitrogen and potassium application had a significant effect on Filled grains/panicle, which recorded the desirable values (72.77 and 70.55 grain) with apply the nitrogen in three splits (N₃), and apply the potassium in three splits K 9-9-7kg, during the two seasons, indicated to apply the nitrogen in different splits plus apply the potassium sulfate may be increase the nitrogen response then increase the nitrogen use efficiency will increase the crop growth rate and filled grains/panicles

Data in Table (3) showed that, the interactions between nitrogen and leave foliar application had a significant effect on filled grains/panicle, which recorded the desirable values (73.77-70.22grain) with apply the nitrogen in two splits N₂, and apply the leaf

foliar from GR3 during the two seasons, indicated to apply the nitrogen in different splits plus apply the growth regulators may be increase the grain filling rate and filled grains/panicle. In the similar study Thirthalingappa et al. (1999). Mentioned that, the probable reason for increasing 1000-grain weight under application of GA3 may be attributed to the role of GA3 in delayed senescence of plants, by delayed destruction proteins and chlorophyll, this due to increase photosynthetic area, subsequently metabolic compounds, which restore in the grains. On the other hand, Jagadeeswari et al. (1998) found that the 1000-grain weight was decreased by applying GA3.

Data in Table (4) showed that, the interactions between potassium and leaf foliar application had a significant effect on Filled grains/panicles, which recorded the desirable values (77-77.44grain), with apply the potassium in K₃, which, apply the leaf foliar with GR₃ during the two seasons, indicated to apply the nitrogen in different splits plus apply the potassium sulfate may be increase the photosynthetic rate in the flag leaf and filled grains/panicle.

Data in Table (5) showed that, the interactions between nitrogen, potassium and leaf foliar application had a significant effect on Filled grains/panicle, which recorded the desirable value with apply the Nitrogen in three splits N₃, and apply the potassium in three split K₃ plus GR₃ as a foliar application during the two seasons.

Data in Table (6) showed that, the interactions between nitrogen and potassium application had a significant effect on Total grains/panicle, which recorded the desirable values (205.55-205.77grain) with apply the Nitrogen in two splits N₂, while, apply the potassium in three splits K₃ during the two seasons, indicated that the application potassium sulfate in different splits will increase the nitrogen response then increase the nitrogen use efficiency then carbohydrate accumulation which increase the total grains/panicles.

Data in Table (7) showed that, the interactions between nitrogen, potassium and leave foliar application had a significant effect on Total grains/panicles, which recorded the desirable values with apply the nitrogen in two splits N₂, and apply the potassium in one split K₁ with GR₃ as a foliar application (222.33 and 215grain) during the two seasons, that, may be referred to the balance of fertilizer plus

growth regulator enhancement the number of grains/panicle.

Data in Table (8) showed that, the interactions between nitrogen and potassium application had a significant effect on Seed set (%), which recorded the best values (37.63 and 37.34grain) with apply the Nitrogen in three splits N3, and apply the potassium in two splits K₂ during the two seasons, indicated to apply the nitrogen in different splits plus apply the potassium sulfate will increase the Nitrogen use efficiency then the crop growth rate and seed set (%).

Data in Table (9) showed that, the interactions between nitrogen and leave foliar application had a significant effect on Seed set %, which recorded the desirable values (36.47 and 38.51 %) with apply the nitrogen in one splits N₁, while, apply the leave foliar in two splits GR₃ during the two seasons, indicated to apply the nitrogen in different splits plus apply the growth regulators will increase the nitrogen response and nitrogen use efficiency then the crop growth rate and seed set %.

Data in Table (10) showed that, the interactions between potassium and leaf foliar application had a significant effect on Seed set%, which recorded the desirable values (38.23 and 41.46%) with apply the potassium in three splits K₃, and apply the leaf foliar from GR₃ during the two seasons, indicated to apply the nitrogen in different splits plus apply growth regulator will increase the nitrogen response then crop growth rate and seed set%.

Data in Table (11) showed that, the interactions between nitrogen, potassium and leaf foliar application had a significant effect on Seed set (%), which recorded the desirable values with apply the nitrogen in two splits N₂, while, apply the potassium in three splits K₃ and GR₃ as a foliar application (38.96 and 44.32%) during the two seasons. These results may be attributed to the role of GA3 in increasing panicle exsertion % and wide opening of pale and lemma of spikelet and increasing the period of stigma receptivity for pollen grains. These results are in harmony with these obtained by Kalavathi *et al.* (2000) and Abo Youssef (2003).

Results in Table (12) revealed the effect of Nitrogen, Potassium and Leave foliar application, as well as, the effect of interaction on 1000- grain weight, Seed yield and harvest index. The highest values for 1000- grain weight and harvest index were (23.43 and 23.69gm) and (21.37 and 21.12%) with the second Nitrogen application (N₂) during 2020 and 2021 seasons, respectively. But the lowest values were (22.30 and 23.66gm) and (18.77 and 20.78%) with the Nitrogen application (N1) during 2020 and 2021 seasons, respectively.

These results indicate that, 1000- grain weight, seed yield and harvest index (%) were highly affected by Nitrogen applications. Data showed that, 1000- grain weight, grain yield and harvest index was highly affected by Nitrogen applications in both seasons.

Also the highest values for grain yield were (3.18 and 3.24 ton/ha) with the third Nitrogen application (N₃) during 2020 and 2021 seasons, respectively. But the lowest values were (2.85 and 2.90 ton/ha) with the Nitrogen application (N₁) during 2020 and 2021 seasons, respectively.

Highly significant differences between Potassium applications which. Showed the highest values for 1000- grain weight were (24.31 and 24.88g) with the third Potassium application (K₃) during 2020 and 2021 seasons, respectively. But the lowest values were (22.30 and 24.06g) with the first Potassium (K1) application during 2020 and 2021 seasons, respectively. In the similar results by Abd El-Rahman, et al (2004) The highest values for seed yield and harvest index were (3.05 and 3.36 ton/ha) and (22.28 and 24.02%) with the second Potassium application (K2) during 2020 and 2021 seasons, respectively. But the lowest values were (2.91 and 2.88 ton/ha) and (18.84 and 19.75%) with the first Potassium application (K1) during 2020 and 2021 seasons, respectively.

Also, the data in Table (12) indicated that, there were highly significant differences among the Leaf foliar application for 1000grain weight, seed yield and harvest index in both seasons. The highest values of 1000- grain weight, grain yield and harvest index were obtained from third Leave foliar application (GR₃) (23.08 and 24.89g), (3.10 and 3.22ton/ha) and (21.36 and 23.11%) during both seasons respectively.

The lowest values for 1000- grain weight, grain yield and harvest index were (22.46 and 23.88g), (2.91 and 2.98 ton/ ha) and (19.47 and 20.68%) with the first Leave foliar (IAA) application during 2020 and 2021 seasons, respectively. These results indicate that 1000-grain weight, grain yield and harvest index were highly affected by Leave foliar application.

Data in Table (12) show that, the interaction among the Nitrogen, Potassium and Leave

100

Abo Yousef et al

foliar applications, was highly significant for grain yield during 2020 and 2021 seasons, the highest values of grain yield were (3.68 and 3.69 ton) by using third Nitrogen application (N₃) with the second Potassium applications(K_2) and the third Leave foliar application (GA₃)during both seasons.

But, the lowest values were (2.18 and 2.08 ton) for (N1) with at (K1) with the second Leave foliar application (Ascorbic acid), during 2020 and 2021 seasons, respectively. These data indicate that, there were highly affected by applied third Nitrogen applications and increased the seed yield when applying a second Potassium applications with third Leaf foliar application. In the same line Padmore (2017) found that, the N level increased within a particular K level, the crop maintained a similar rate of photosynthesis and dry matter production. Also, it confirmed when N:K was applied at a 2:1 ratio, grain yield was the highest and chalkiness at its lowest.

Data in Table (13) showed that, the interactions between nitrogen and potassium application had a significant effect on 1000-grain weight, which recorded the desirable values (25.66 and 27.07gm) with apply the nitrogen in three splits N₃, and the potassium in one splits K₁during the two seasons, indicated to apply the nitrogen in different splits plus the potassium sulfate in one split in early growth stage, may be enhancement the accumulation for the carbohydrate and increase grain filling rate.

Data in Table (14) showed that, the interactions between nitrogen and potassium application had a significant effect on Grain yield (t/ha.), which recorded the best values (3.22 and 3.44t/ha) with apply the nitrogen in three splits N₃, while, apply the potassium in during the two seasons, two splits K₂, indicated to apply the nitrogen in different splits will increase the nitrogen response then increase the nitrogen use efficiency plus apply the potassium sulfate will increase the crop growth rate and seed yield/unit. The increase in biomass yield could be attributed to the increase in plant height, number of tillers /m2, number of panicles/hill, panicle weight, seed setting percentage and 1000-grain weight, which increased with application of GR₃. The obtained results are in full agreement with reported by Ponnuswamy those and Prabagaran (1997); Jagadeeswari et al. (1998); Singh and Sahoo (1998) and Abo Youssef (2003).

Data in Table (15) showed that, the interactions between nitrogen and leaf foliar application had a significant effect on grain yield (t/ha.) ,which recorded the best values (3.49 an d3.51t/ha) with apply the nitrogen in three splits N₃, which, apply the leaf foliar in two splits GR₃ in the two seasons, indicated to apply the nitrogen in different splits will increase the nitrogen response then increase the nitrogen use efficiency plus apply the growth regulators will increase the crop growth rate and seed yield/unit. These results may be due to the fact that applied GA3 produced higher number of panicles/m2 maximum panicle exsertion percentage, the highest panicle length, maximum seed setting percentage, and heavier 1000-grain weight, which consequently gave higher grain yield. Similar results were obtained by Prasad et al. (1989); Duan and Ma (1992); Ponnuswamy and Prabagaran (1997); Jagadeeswari et al. (1991); Kalavathi et al. (2000) and Abo Yossef (2003).

Data in Table (16) showed that, the interactions between potassium and leaf foliar application had a significant effect on grain yield (t/ha.), which recorded the best values (3.49 and 3.51 t/ha) with apply the potassium in one splits K_1 , which, apply the leaf foliar in two splits from GR_1 in the two seasons, indicated to apply the nitrogen in different splits will increase the nitrogen response then increase the nitrogen use efficiency plus apply the potassium sulfate will increase the crop growth rate and seed yield/unit.

Data in Table (17) showed that, the interactions between nitrogen, potassium and leave foliar application had a significant effect on grain yield, which recorded the best values (3.68 and 3.69 t/ha) with apply the nitrogen in three splits N₃, while, apply the potassium in two splits K₂ and apply GR₃ as a growth regulators in the two seasons, indicated to apply the nitrogen in different splits will increase the nitrogen response then increase the nitrogen use efficiency plus apply the potassium sulfate will increase the crop growth rate and seed yield/unit.

Data in Table (18) showed that, the interactions between nitrogen, potassium application had a significant effect on Harvest index, which recorded the best values (23.68 and 25.62%) with apply the nitrogen in three splits N₃, while, apply the potassium in one split K₁ during two seasons, indicated to apply the nitrogen in different splits will increase the nitrogen response then increase the nitrogen use efficiency plus apply the potassium sulfate

will increase the crop growth rate and Harvest index.

Data in Table (19) showed that, the interactions between nitrogen and leaf foliar application had a significant effect on Harvest index ,which recorded the best values (24.15 and 24.97%) with apply the nitrogen in three splits N₃, while, apply the leave foliar in two splits GR₃ in the two seasons, indicated to apply the nitrogen in different splits will increase the nitrogen response then increase the nitrogen use efficiency plus apply the growth regulators will increase the crop growth rate and Harvest index.

Data in Table (20) showed that, the interactions between potassium and leave foliar application had a significant effect on Harvest index, which recorded the best values (23.68 and 25.18%) with apply the potassium in two splits K₂, while, apply the leave foliar in two splits of GR₃ in the two seasons, indicated to apply the nitrogen in different splits will increase the nitrogen response then increase the nitrogen use efficiency plus apply the potassium sulfate will increase the crop growth rate and Harvest index.

Data in Table (21) showed that, the interactions between nitrogen, potassium and leaf foliar application had a significant effect on Harvest index, which recorded the best values (27.77 and 29.13%) with apply the nitrogen in two splits N₂, while, apply the potassium in two splits K₂, and apply GR₃ as a growth regulators in the two seasons, indicated to apply the nitrogen in three times will increase the nitrogen use efficiency plus apply the potassium sulfate will increase the crop growth rate and Harvest index.

CONCLUSION:

Finally, the results concluded that, apply the nitrogen fertilizer on three splits pass, potassium sulfate on two split and apply GA₃ as a source to hormones increased the seed set % of female parent then hybrid seed production, and could be used as a recommended for hybrid rice seed production.

REFERENCES

- Abd El-Hamed, M.M. 2018:.Effect of potassium on productivity of some rice cultivars under various sowing dates on saline soils. Proceeding of the seventh field crops conference,18-19 Dec., Giza,Egypt.
- Abd El-Rahman, A.M.M., Zayed, B.A., Shehata, S.M. 2004: Response of two rice cultivars to

potassium fertilizer under soil. Egypt .J. Agric., Res., 82(1), 209.211.

- Adam, G.A., Jahan, N. 2011: Effects of naphthalene acetic acid on yield attributes and yield of two varieties of rice (*Oryza sativa L.*). Bangladesh Journal of Botany. 40 (1): 97-100.
- Anonymous, 2009: Food and Agriculture Organization of the United Nations (FAO). The state of food security in the world, p. 1-30.
- Ashakumari, A. 2014: Effect of plant growth regulators and chemical on panicle emergence and yield of late sown rice. Thesis master of science in agriculture. Pp 1-98.
- Bakhsh, I., Himayatullah, K., Inayatullah, U., Qasim, M., Anwar, S., Javaria, S. 2011: Effect of plant growth regulator application at different growth stages on the yield potential of coarse rice. Sarhad Journal of Agriculture. 27(4): 513-518.
- Baksh, I., Hussain, I., Sabir, A.A. 2017: Compatible influence of np fertilizers and indole acetic acid with different doses on coarse rice. (Oryza Sativa L.) .Gomal University Journal of Research [GUJR], Vol 33, Issue 2, ISSN: 1019-8180`
- Banerjee, H., Ray, K., Dutta, S.K., Majumdar, K., Satyanarayana, T., Timsina, J. 2019: Optimizing Potassium Application for Hybrid Rice (Oryza sativa L.) in Coastal Saline Soils of West Bengal. Agronomy, 8, 292.
- Duncan, B D. 1955: Multiple Range and Multiple F. Test .Biometrics. 11 : 1-42.
- Economic Affairs Sector 2021: Final report for rice productivity in Egypt. Economic Affairs Sector. Ministry of agriculture and land reclamation, Egypt.
- El-Ekhtyar, A.M., Bassiouni, S.M., Mikhael, B.B., Elkhoby, W.M. 2014: Effect of Gibberellic Acid and Potassium Applications in Improving Salinity Tolerance of Three Rice Cultivars alexandria science exchange journal, VOL.35, No.1.
- Gomez, K.A., Gomez, A.A. 1984: Statistical Procedures for Agricultural Research , 2 nd Ed. John Wiley and Sons, Inc. New York.
- Hamoud, Y.A., Wang, Z., Guo, X., Shaghaleh, H., Sheteiwy, M., Chen, S., Qiu, R., Elbashier, M.M.A. 2019: Effect of Irrigation Regimes and Soil Texture on the Potassium Utilization Efficiency of Rice, Agronomy 2019, 9(2), 100.
- IRRI 2008: Standard Evaluation System for rice 3rd Edition, International Rice Testing Program.
- Jahan, A., Islam, A., Sarkar, I.U., Iqbal, M., Nayeem, A., Islam, R. 2022: Nitrogen response of two high yielding rice varieties as influenced by nitrogen levels and growing seasons,Geology, Ecology, and Landscapes Volume 6, 2022.

102

- Kalala, A.M., Amuri, N.A., Semoka, J.M. 2017: Optimum Levels of Phosphorus and Potassium for Rice in Lowland Areas of Kilombero District, Tanzania. Agriculture, Forestry and Fisheries. Vol. 6, No. 1, , pp. 26-33.
- Padmore, K.D. 2017: Levels of nitrogen and potassium [N:K] fertilizer combinations in commercial rice production system. Global Journal of Crop, Soil Science and Plant Breeding. Vol. 5 (2), pp. 278-286.
- RRTC proceeding, 2020: National Rice Research Program: Final results of 2019 growing season. Sakha, Egypt.
- Susilawati, P.N., Surahman, M., Purwoko, B.S., Suharsi, T.K., Satoto, 2014: Effect of GA₃ Concentration on Hybrid Rice Seed Production in Indonesia. nternational Journal of Applied Science and Technology Vol. 4 No. 2; March 2014..

- Tian, H., Xu, Y., Liu, S., Jin, D., Zhang, J., Duan, L., Tan, W. 2017: Synthesis of Gibberellic Acid Derivatives and Their Effects on Plant Growth. Molecules 2017, 22, 694; doi:10.3390.
- Vidya, Y. 2011: Hybrid rice response to levels and time of potassium application. Master of Science, Faculty Agriculture Department Agronomy College: Agricultural College, Bapatla University.
- Wu, Li-Li, Li Liu, Z., Wang, J., Zhou, C., Chen, K. 2011: Morphological, anatomical, and physiological characteristics involved in development of the large culm trait in rice. AJCS 5(11):1356-1363.
- Zhang, Y., Huang, G., Zhang, S., Zhang, J., Gan, S., Cheng, M., Hu, J., Liyu, H. 2021: An innovated crop management scheme for perennial rice cropping system and its impacts on sustainable rice production, European Journal of Agronomy Volume 122.

Table 1: The effect of nitrogen, potassium splits and leave foliar with their interactions on Filled grains, Total grains/panicles and seed setting% of the parental line of hybrid No. 1 during 2020 and 2021 seasons.

Treatment	Filled grains/panicle		Total grair	ns/panicles	Seed set	Seed setting (%)		
	2020	2021	2020	2021	2020	2021		
Nitrogen level								
N ₁	55.81b	56.74c	154.01c	142.79c	35.45 a	36.60a		
N2	64.18a	64.37a	164.12a	167.05a	32.32 c	31.89c		
N3	63.96a	62.07b	159.85b	148.84b	33.61b	34.94b		
F- test	**	**	**	**	**	**		
potassium level								
K 1	54.33c	53.44c	146.53c	150.81c	30.62c	31.38c		
K 2	60.74b	61.33b	166.55a	156.77a	34.66b	35.43b		
К з	68.88a	68.40a	164.89b	151.10b	36.09a	36.62a		
F- test	**	**	**	**	**	**		
Growth regulators								
GR1	53.85c	54.62c	162.31a	156.41a	31.20c	31.52c		
GR ₂	61.77b	61.88b	160.28b	152.52b	34.52b	35.03b		
GR ₃	68.33a	66.66a	155.38c	149.76c	35.66a	36.87a		
F- test	**	**	**	**	**	**		
Interaction								
N x K	**	**	*	*	**	**		
N x GR	**	**	NS	NS	**	**		
K x GR	**	**	*	*	**	**		
N x K x GR	**	**	*	*	**	**		

*Significant at 5 % level, ** highly Significant at 1 % level, NS Not Significant

Letter(s) refer to Duncan's multiple range Test

N1:150 kg N/ha., as urea 46%) at 20 days from transplanting.

N₂: Half at basal + half at 20 days from transplanting.

N₃: One-third at basal + one-third at 20 days from transplanting+ one-third at 40 days from transplanting.

K1: (60 kg K2O/ha, by potassium sulphate 48% K2O). One time, as basal.

K2: Half was added at basal and half after 30 days from transplanting .

 $K_{3:}$ 20kg/ha was added at basal and 20kg/ha after 30 days from transplanting and 20 kg/ha after 50 days from transplanting .

GR1: Indole Acetic Acid (IAA) (30 g/ha.) (100% concentration).

GR₂: Ascorbic Acid (30 g/ha.) (100% concentration).

GR₃: Gibberellins (GA₃) (30 g/ha.) (100% concentration).

	Filled grains/panicle							
Nitrogen level		2020			2021			
	pot	assium lev	/el	р	potassium level			
	K_1	K2	K ₃	K_1	K2	K ₃		
N_1	47.55d	57.55c	62.33b	49e	55d	66.22b		
N_2	58.55c	62.44b	71.55a	56.11d	61.66c	68.44ab		
N3	56.88c	62.22b	72.77a	55.22d	67.33b	70.55a		

Table 2: The effect of Nitrogen and potassium splits with their interactions on Filled grains/panicle of female line during 2020 and 2021 seasons.

Table	3:	The	effect	of	Nitr	ogen	splits	and	leaf	foliar	for	hormones	with	their	interactions	on	Filled
grains	s of	fema	le line	e du	iring	; 2020	and	2021 s	seasc	ns.							

	Filled grains/panicle							
		2020			2021			
Nitrogen	Gro	wth regula	tors	Gr	Growth regulators			
level	GR1	GR ₂	GR ₃	GR1	GR ₂	GR₃		
N_1	51.00f	56.22e	60.22d	53.44e	56.11d	60.66c		
N_2	53.33f	65.44c	73.77a	51e	65b	70.22a		
N3	57.22e	63.66c	71.00b	59.44c	64.55b	69.11a		

Table 4: The effect of potassium splits and leaf foliar for hormones with their interactions on Filled grains/panicle of female line during 2020 and 2021 seasons.

		Filled grains/panicle						
		2020		2021				
notoccium louol	Grov	wth regula	itors	Growth regulators				
potassium iever	GR_1	GR ₂	GR₃	GR1	GR ₂	GR₃		
K_1	48.88f	48.88f 55.88d 58.22cd			51.33e	56.33d		
K2	52.11e	52.11e 60.33c 69.77b			64.77c	66.22c		
K3	60.55c	69.11b	77.00a	58.22d	69.55b	77.44a		

Table 5: The effect of nitrogen, potassium splits and leaf foliar for hormones with their interactions on Filled grains/panicle of female line during 2020 and 2021 seasons.

				Filled g	rains/panicle	2	
			2020			2021	
Nitrogen	potassium	Gr	owth regula	ators	Gr	owth regulat	ors
level	level	GR1	GR ₂	GR ₃	GR_1	GR ₂	GR ₃
	\mathbf{K}_1	44.66l	46.66kl	51.33ijk	50.33gh	43.33i	53.33fh
N_1	K2	51.66ijk	59.66eh	61.33efg	48hi	58.66df	58.33df
	K3	56.66gj	62.33dg	68cd	62ce	66.33bc	70.33b
	\mathbf{K}_1	47.33kl	63.66def	64.66de	49.66gh	60df	58.66df
N_2	K2	50.66jk	62dg	74.66b	48hi	64.33cd	72.66b
	K3	62dg	70.66bc	81a	55.33eg	70.66b	79.33a
	\mathbf{K}_1	54.66hij	57.33fi	58.66eh	58df	50.66gh	57df
N 3	K2	54hij	59.33eh	73.33b	63cd	71.33b	67.66bc
	K3	63dg	74.33b	82a	57.33df	71.66b	82.66a

Table 6: The effect of nitrogen and potassium doses with their interactions on Total grains/panicle of female line (IR96925A) during 2020 and 2021 seasons.

	Total grains/panicles								
		2020			2021				
Nitrogen	pot	assium lev	vel	р	potassium level				
level	\mathbf{K}_1	K2	K3	K_1	K2	Kз			
N_1	150.44f	152.77f	168.11e	150.66e	154.55e	158.55e			
N_2	203.44ab	187.66c	205.55a	193.33b	184.55c	205.77a			
N3	180.55d	183.66d	201.00b	169.11d	180.55c	198.88ab			

104

				Total gra	ins/panicles				
			2020			2021			
Nitrogen	potassium	Gro	owth regula	itors	Gr	owth regulat	ors		
level	level	GR1	GR ₂	GR ₃	GR_1	GR ₂	GR3		
	\mathbf{K}_1	155.33hi	147ij	149ij	152ij	150ij	150ij		
N_1	K2	141.66j	156hi	160.66gi	146j	154hj	163.66fj		
	K3	153.33hj	166.33gh	184.66ef	157gj	160fj	158.66gj		
	\mathbf{K}_1	206.66bc	187.66e	222.33a	183.66bf	202.33ac	215.00a		
N_2	K2	188e	183.33ef	191.66de	183.33bf	177.33dh	193ae		
	K ₃	187.33e	203cd	220a	198.66ad	204ab	214.66a		
	K_1	180.33ef	172fg	189.33e	171.33ei	162.33fj	172.33ei		
N3	K2	172.66fg	183ef	195.33ce	173.66ei	179cg	190.33be		
	K3	185ef	202.33cd	215.66ab	194ae	189be	192.66ae		

Table 7: The effect of nitrogen, potassium splits and leaf foliar for hormones with their interactions on Total grains/panicle of female line during 2020 and 2021 seasons.

Table 8: The effect of nitrogen and potassium splits with their interactions on seed set% of female line during 2020 and 2021 seasons.

			Seed	l set (%)				
		2020			2021			
Nitrogen	pot	tassium le [.]	vel	p	potassium level			
level	K_1	K2	Kз	K 1	K2	Kз		
N_1	31.65c	33.14c	37.08a	32.51c	35.55bc	41.75a		
N_2	28.67d	33.22c	35.07b	28.98d	33.39c	33.29c		
N3	31.55c	37.63a	36.14ab	32.65c	37.34b	34.82c		

Table 9: The effect of nitrogen splits and leaf foliar for hormones with their interactions on seed set % of female line during 2020 and 2021 seasons.

	Seed set (%)								
		2020			2021				
Nitrogen	Gro	wth regula	tors	Growth regulators					
level	GR1	GR ₂	GR₃	GR_1	GR ₂	GR3			
N_1	34.05ab	35.83ab	36.47a	35.16bc	36.14bc	38.51a			
N_2	27.68d	34.17ab	35.12ab	27.04e	33.62cd	35.008bc			
N3	31.87c	33.56b	35.39ab	32.38d	35.33bc	37.11ab			

 Table 10: The effect of potassium splits and leaf foliar for hormones with their interactions on seed set % of female line during 2020 and 2021 seasons.

 Seed set %

potassium level		2020		2021			
	Grov	vth regulate	ors	Growth regulators			
	GR_1	GR ₂	GR3	GR_1	GR ₂	GR₃	
K1	27.35e	33.01cd	31.51d	31.36cd	29.92d	32.86c	
K2	31.55d	34.20c	37.24a	31.88cd	38.10b	36.30b	
K3	34.7bc	36.35ab	38.23a	31.33cd	37.06b	41.46a	

			Seed set (%)						
			2020			2021			
Nitrogen	potassium	Gro	owth regul	ators	Gr	owth regulat	ors		
level	level	GR1	GR ₂	GR3	GR_1	GR ₂	GR3		
	\mathbf{K}_1	28.75fg	31.77cf	34.45ad	33.12ei	28.88ik	35.55df		
N_1	K2	36.46ac	38.25ab	38.17ab	32.87ei	38.11ce	35.66df		
	K3	36.95ab	37.48ab	38.96a	39.49bd	41.44ac	44.32a		
	K_1	23.01h	33.93ad	29.08eg	27.06jk	29.65hk	30.22gk		
N_2	K2	26.94g	33.77ae	36.81ab	26.19k	36.32df	37.67ce		
	K3	33.09bf	34.80ad	37.31ab	27.86jk	34.88dg	37.13ce		
	\mathbf{K}_1	30.3dg	33.34bf	31.006dg	33.90eh	31.25fj	32.82ei		
N3	K2	31.26dg	30.58dg	37.57ab	36.57df	39.88bd	35.57df		
	K3	34.06ad	36.77ab	37.6ab	26.65jk	34.88dg	42.93ab		

Table 11: The effect of nitrogen, potassium splits and leave foliar for hormones with their interactions on seed set % of female line during 2020 and 2021 seasons.

Table 12: The effect of nitrogen, potassium splits and leaf foliar hormones with their interactions on 1000-gran weight, grain yield (t/ha.) and Harvest index of the parental line of hybrid No 1 during 2020 and 2021 seasons.

Treatment	1000-grain weight/gm		Grain yield (t/ha.)		Harvest index %	
	2020	2021	2020	2021	2020	2021
Nitrogen level						
N ₁	22.30c	23.66c	2.85c	2.90c	18.77c	20.78c
N2	24.95a	24.99a	3.00b	3.05b	21.37a	22.12a
N3	23.08b	24.89a	3.18a	3.24a	20.70b	22.05b
F- test	**	**	**	**	**	**
potassium level						
K 1	22.57c	24.06c	2.91c	2.88c	18.84c	19.75c
K 2	23.45b	24.60b	3.05a	3.36a	22.28a	24.02a
К з	24.31a	24.88a	3.007b	2.99b	19.72b	21.27b
F- test	**	**	**	**	**	**
Growth regulators						
GR ₁	22.46c	23.88c	2.91c	2.98c	19.47c	20.68c
GR ₂	23.57b	24.30b	2.96b	3.02b	20.02b	21.25b
GR ₃	24.30a	25.37a	3.10a	3.22a	21.36a	23.11a
F- test	**	**	**	**	**	**
Interaction						
N x K	**	**	**	**	**	**
N x GR	NS	NS	**	**	**	**
K x GR	NS	NS	**	**	**	**
N x K x GR	NS	NS	**	**	**	**

*Significant at 5 % level, ** highly Significant at 1 % level, NS Not Significant

Letter(s) refer to Duncan's multiple range Test

N1:150 kg N/ha., as urea 46%) at 20 days from transplanting.

N₂: Half at basal + half at 20 days from transplanting.

 $N_{3:}$ One-third at basal + one-third at 20 days from transplanting+ one-third at 40 days from transplanting.

K1: (60 kg K2O/ha, by potassium sulphate 48% K2O). One time, as basal.

K2: Half was added at basal and half after 30 days from transplanting .

K₃: 20kg/ha was added at basal and 20kg/ha after 30 days from transplanting and 20 kg/ha after 50 days from transplanting .

GR1: Indole Acetic Acid (IAA) (30 g/ha.) (100% concentration).

GR₂: Ascorbic Acid (30 g/ha.) (100% concentration).

GR₃: Gibberellins (GA₃) (30 g/ha.) (100% concentration)

Table 13: The effect of nitrogen and potassium splits with their interactions on 1000-grain weight of female line during 2020 and 2021 seasons.

	1000-grain weight						
		2020			2021		
Nitrogen	pot	tassium lev	vel	potassium level			
level	\mathbf{K}_1	K2	Kз	K_1	K2	K3	
N_1	20.38d	21.83c	24.69ab	22.03c	23.15bc	25.81ab	
N_2	24.40ab	22.92bc	24.79ab	24.67ab	25.26ab	24.75ab	
N 3	25.66a	22.88bc	23.45bc	27.09a	23.78bc	24.09bc	

Table 14: The effect of nitrogen and potassium splits with their interactions on grain yield (t/ha.) of female line during 2020 and 2021 seasons.

			Grain	yield (t/ha.)			
		2020			2021		
Nitrogen level	ро	tassium lev	el		potassium level		
	K ₁	K ₂	K ₃	K_1	K ₂	K ₃	
N ₁	3.12ac	2.75de	3.09bc	2.36f	3.31ac	3.15d	
N_2	2.83de	2.72e	2.86d	3.28c	3.30ac	2.40f	
N ₃	3.19ab	3.22a	3.05c	3.00e	3.44a	3.42ab	

 Table 15: The effect of nitrogen splits and leave foliar for hormones with their interactions on grain yield (t/ha.) of female line during 2020 and 2021 seasons.

	Grain yield (t/ha.)							
		2020		2021				
Nitrogen level	trogen level Growth re			G	rowth regulat	regulators		
	GR_1	GR_2	GR ₃	GR_1	GR_2	GR_3		
N_1	3c	2.84d	3.12b	3.08b	2.74d	3.03b		
N_2	2.90cd	2.89cd	2.69e	2.91c	3.09b	3.12b		
N_3	2.81d	3.15b	3.49a	3.09b	3.12b	3.51a		

Table 16: The effect of potassium splits and leave foliar for hormones with their interactions on grain yield (t/ha.) of female line during 2020 and 2021 seasons.

		Grain yield (t/ha.)					
		2020			2021		
notoccium loval	Gro	Growth regulators			Growth regulators		
potassium iever	GR_1	GR ₂	GR3	GR_1	GR ₂	GR ₃	
K_1	2.66d	3.33a	3.16b	2.83d	3.46a	3.10c	
K2	3.19b	2.71d	2.84c	3.22bc	3.40a	2.71e	
K3	2.87c	2.84c	3.30a	3.24b	2.85d	3.10c	

Table 17: The effect of nitrogen, potassium splits and leave foliar hormones with their interactions on grain yield t/ha of female line during 2020 and 2021 seasons.

		Grain yield (t/ha.)							
			2020			2021			
Nitrogen	potassium	Gr	owth regul	ators	Gr	owth regulat	ors		
level	level	GR1	GR ₂	GR3	\mathbf{K}_1	GR ₂	GR3		
	K_1	2.65hj	3.20df	3.50ac	K3	2.08m	2.37ik		
N_1	K2	3.60ab	2.18mn	2.47hj	3.68a	3.02fg	3.31be		
	K3	2.75gi	3.15dg	3.39bd	2.92gh	3.13dg	3.40b		
	\mathbf{K}_1	2.37kl	3.66a	2.48ik	3.12dg	3.48ac	3.23df		
N_2	K2	3.51ac	2.46ik	2.38kl	3.05eg	3.59ab	3.67a		
	K3	2.83gi	2.55gh	3.21df	2.55hi	2.20lm	2.47kl		
	K_1	2.95fh	3.12eg	3.49ac	2.73hi	2.57gh	3.41be		
N3	K2	2.47hj	3.50ac	3.68a	2.94gh	3.57ab	3.69a		
	Кз	3.02bd	2.82gi	3.31ce	3.59ab	3.23cf	3.43ad		

107

	Harvest index							
		2020			2021			
Nitrogen	pot	tassium lev	vel	potassium level				
 level	K_1	K2	Kз	K_1	K2	Kз		
 N_1	21.32bc	19.74cd	21.05bc	18.06d	24.52ab	23.78bc		
N_2	21.85b	17.53e	16.93e	22.3c	18.89d	18.24d		
N3	23.68a	19.25d	21.18bc	25.62a	21.93c	21.79c		

Table 18: The effect of nitrogen and potassium splits with their interactions on harvest index of female line during 2020 and 2021 seasons.

Table 19: The effect of nitrogen splits and leave foliar for hormones with their interactions on Harvest index of female line during 2020 and 2021 seasons.

		Harvest index								
			2020			2021				
	Nitrogen	Growth regulators			Growth regulators					
	level	GR1	GR ₂	GR₃	GR_1	GR ₂	GR ₃			
-	N_1	20.73bc	19.80bd	21.59b	22.73b	21.36bc	22.28b			
	N2	18.82cd	19.15cd	18.33d	19.78cd	21.41bc	22.1b			
	N3	18.86cd	21.10bc	24.15a	21.25bc	19.27d	24.97a			

Table 20: The effect of potassium splits and leaf foliar for hormones with their interactions on Harvest index of female line during 2020 and 2021 seasons.

		Harvest index						
		2020		2021				
notossium loud	Gro	Growth regulators			Growth regulators			
potassium iever	GR1	GR ₂	GR₃	GR1	GR ₂	GR₃		
K1	20.74bc	19.75cd	22.43ab	19.64c	17.49d	22.12b		
K2	19.50cd	17.27e	23.68a	22.27b	24.62a	25.18a		
K3	18.17de	19.10ce	21.89ab	21.85b	19.92c	22.04b		

Table 21: The effect of nitrogen, potassium splits and leave foliar for hormones with their interactions on harvest index of female line during 2020 and 2021 seasons.

		Harvest index							
			2020			2021			
Nitrogen	potassium	Gro	owth regul	ators	Gr	owth regulat	ors		
level	level	GR1	GR ₂	GR3	GR_1	GR ₂	GR3		
	\mathbf{K}_1	18.95cg	21.93bd	23.07bc	21.33ci	15.73kl	17.12jl		
N_1	K2	23.41bc	16.29fi	19.54cg	25.03bd	22.89ch	25.66bc		
	K3	19.83cg	21.18ce	22.15bd	21.84ci	25.45bc	24.06bf		
	K_1	19.77cg	26.22ab	18.01dh	19.76fj	21.62ci	25.52bc		
N_2	K2	21.43ce	14.46hi	27.77a	20.31ej	27.42ab	29.13a		
	K3	15.27gi	15.24gi	20.27cf	19.28gk	15.191	20.27ej		
	K_1	23.50bc	21.34ce	16.71ei	17.84il	15.12l	23.72bg		
N3	K2	13.66i	21.08ce	23.00bd	21.47ci	23.56bh	20.77dj		
	K3	19.41cg	20.89cf	23.24bc	24.45be	19.13hk	21.80ci		

تحسين إنتاج تقاوى الأرز الهجين تحت مواعيد إضافة مختلفة للنيتروجين والبوتاسيوم ومصادر منظمات النمو محمود ابراهيم أبويوسف², رمضان على الرفاعى¹, عادل يوسف شاهين² ومحمد عباس جمعه² ¹قسم الحاصيل, كلية الزراعة, جامعة طنطا, مصر ²قسم بحوث الأرز, معهد بحوث المحاصيل الحقلية, مركز البحوث الزراعية. * البريد الإلكتروني للباحث الرئيسي: <u>abo-yosef709@yahoo.com</u>

الملخص العربى

أجريت هذه الدراسة في المزرعة البحثية بسخا – محطة البحوث الزراعية – كفرالشيخ – مصر خلال موسمي الزراعة 2020 و 2021. شملت هذه الدراسة علي سلالتين الأولي السلالة العقيمة ذكريا R69625A كأم مع السلالة المعيدة للخصوبة جيزة 178 لإنتاج تقاوي الأرز الهجين مصري 1 (سخا 2034 هجين) والتجربة صممت في تصميم القطع المنشقة مرتين في ثلاث مكررات ومساحة القطعة التجربية (2.5.) وكانت أهم النتائج في كلا الموسمين كالآتي : كان هناك اختلافات معنوية بين مستويات المعاملات: كان هناك تأثيرا معنويا للتفاعل بين معاملات النتروجين ومعاملات البوتاسيوم علي طول كالآتي : كان هناك اختلافات معنوية بين مستويات المعاملات: كان هناك تأثيرا معنويا للتفاعل بين معاملات النتروجين ومعاملات البوتاسيوم علي طول البنات معدل خروج السنبلة وعدد السنابل الخصبة /للجورة ووزن السنبلة وطول السنبلة ووعدد الحبوب الخصبة/للسنبلة وعدد الحبوب الكلية/للسنبلة ونسبة العقد في الحبوب ووزن 1000 حبة ومحصول الحبوب للجورة ومعامل الحصاد في كلا الموسمين .كان هناك تأثيرا معنويا للتفاعل بين معاملات البرتوجين ومعاملات الرش بمنظات النمو علي طول النبات معدل خروج السنبلة وطول السنبلة وعدد الحبوب الحسبة/للسنبلة ونسبة العقد في الحبوب ومحصول الحبوب للجورة ومعامل الحصاد في كلا الموسمين. كان هناك تأثيرا معنويا للتفاعل بين معاملات البوتاسيوم ومعاملات الرش بمنظات النمو علي ومحصول الحبوب للجورة ومعامل الحصاد في كلا الموسمين. كان هناك تأثيرا معنوي من الدرجة الثانية (بين العوامل الثلاثة) في صفات طول البرب ومحصول الحبوب للجورة ومعامل الحصاد في كلا الموسمين. كان هناك تأثيرا معنوي معنوي من معاملات البرش بنظات النمو علي ومعصول الحبوب للجورة ومعامل الحصاد في كلا الموسمين. كان هناك تافيرا معنوي من معاملات البوتاسيوم ومعاملات الرش بنظات النمو علي ومعصول الحبوب للجورة ومعامل الحصاد في كلا الموسمين. كان هناك معنوي من معاملات البربعة الثلية (للسنبلة وعدد الحبوب الكبية/للسنبلة ونسبة العقد في ومعمول الحبوب للجورة ومعامل الحصاد في كلا الموسمين. كان هناك معنوي من الدرجة الثلية اللمية الموبي ورف الحبوب الحبور ومعامل الحساد في كلا الموسمين. ومن خلال النتائج السابية وعدد الحبوب الكبية/للسنبلة ونسبة العقد في المومن الحبوب للحبور ومعامل الحساد ومرى الموبي المصاد مناية الساد الوضي معنوي معنوي معنوي من الدرجين وحبي مالم

الكلمات الاسترشادية: