Effect of Minimal Processing Versus Thermal Processing on the Quality Characteristics of Grapefruit Juice

A. H. Foda1*, E. A. El-Damaty1, M. S. Ammar1, and F. O. F. Abou-Zaid2

1 Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt.
2 Department of plant production, Desert Research Centre, Cairo, Egypt

*Corresponding author E-mail: Alifoda88 @azhar.edu.eg (A. Foda)

ABSTRACT

This study was carried out to evaluate the effect of using ultraviolet (UV), ultrasound (US) with orange peel extract (OPE) combined treatments as novel minimal processing techniques vs. thermal processing on the physiochemical, microbiological and sensorial characteristics of grapefruit juice. Grapefruit juice samples were untreated (control), thermally processed (at 90°C for 5 min) and minimally processed at four combinations (sonicated by using 35 kHz frequency at 25°C for 15 and 30 min. / UV treated by using UV dose 3.525 J/m² at 25°C for 15 and 30 min. / 250 µl orange peel extract). The results showed that thermal and minimal processing of grapefruit juice did not affect its physiochemical characteristics. The degradation of ascorbic acid for minimally processed juice was lower (11.11- 20.5%) than that occurred by thermal processing (63.8%). The extractability of carotenoids and polyphenols of minimally processed juice sample was significantly increased (p < 0.05) as compared to control and thermal processed juice samples which contain the lowest carotenoid and polyphenol contents, this was reflected in recording the highest antioxidant capacity for minimally processed samples. Thermal and minimal processing exhibited noticeable reduction in microbial load as compared to control. Also, the minimally processed samples had lower sensory scores than control but higher than that of thermally processed sample. Results obtained support the use of minimal processing technique to preserve grapefruit juice with keeping their quality characteristics.

Key words: Thermal processing, ultraviolet, ultrasound, orange peel extract, minimal processing, grapefruit juice.

INTRODUCTION

Grapefruit juice (Citrus paradisi) is produced all over the world, because of its health benefits and favourite taste. In addition to its high content of ascorbic acid, which inhibit oxidative reactions in vivo. Unfortunately, grapefruit juice encourages the growth of microorganisms, such as mould and yeast, which may cause spoilage of juice even at cold storage because of its nutrients content beside its low pH value (2.9–3.3) (Chia et al., 2012). So it is necessary to preserve treatment for preventing spoilage (Van Impe et al., 2018). Thermal processing is an effective preservation treatment as it has destructive effect on both enzymes and microorganisms, but it can detrimentally affect nutritive, sensory and functional characteristics of juices (Barba et al., 2012). Also, consumer's concern for healthy foods (with fresh quality characteristics), forced food processors to use minimally processing techniques which can inactivate microorganisms and certain enzymes of interest to give foods sufficient shelf life during storage and distribution without affecting the nutritional and sensory characteristics as occurred by heat treatment (Siddiqui and Rahman, 2014 and Aadil et al., 2018).

Minimal processing is based on hurdle technologies, especially non-thermal hurdles such as additives, modified-atmosphere packaging, antioxidants, antimicrobials, ultraviolet radiation, sonication, and high hydrostatic pressure, etc. (Bansal et al., 2015 and Alzamora et al., 2016).

Ultraviolet (UV) radiation is used to protect juices from spoilage. The used wavelength is between 200–280 nm, inhabit microbes by blocking DNA transcription (Franz et al., 2009 and Caminiti et al., 2012). Ultraviolet light when used in preservation fruit juices reduce the harmful resistant microorganism by a 5 log reduction (Kouchma, 2009). UV radiation is a safe method for preserving juices (Alabdali et al., 2020).

Similarly, ultrasound (US) preserves foods such as fruit juices by inhibiting microorganisms and enzymes, which cause spoilage changes (Fonteles et al., 2012). Ultrasound induces cavitation, form gas bubbles in the juice, which explode producing stark shock waves which forming free radicals.
across the cell membrane, resulting in microbial inhibition (Su et al., 2013).

Citrus peel extracts are containing essential oils, which inhibit the growth of microbes (Chun-Lin et al., 2013). So, Khandpur and Gogate (2016) invented a novel approach by using the recovered active ingredients from citrus peel wastes in combination with other treatments for juice preservation. So, This Research aimed to evaluate the effect of combination ultraviolet, ultrasound and orange peel extract as minimal processing techniques for preserving grapefruit juice comparing traditional thermal processing.

MATERIALS AND METHODS

Materials:

Grapefruit samples:

Grapefruit (Citrus X paradisi) star ruby cultivar was purchased from Daltex agriculture, El Gharbia, Egypt and immediately transported to the laboratory for processing in October 2020.

Essential oil of orange peel extract:

Essential oil of Baladi orange was acquired from El-Marwa food industries, Juhayna group, (6th of October City, Egypt).

Chemicals:

All chemicals and reagents used in analytical methods were analytical grade, produced by Sigma-Aldrich, CO. (St. Louis, MN, USA) were purchased from El-Gamhouria Trading for Chemicals and Drugs Company, Egypt.

Microorganisms’ strains:

Four bacterial strains representing gram-negative (Escherichia coli and Bacillus subtilis), gram positive bacteria (Enterobacter and Pseudomonas sp) and fungi strains (Aspergillus niger) were obtained from Chemistry of Natural and Microbial product Department, National Research Center, Giza, Egypt. These microorganisms were checked for their purity and identity and finally recultivated to obtain active cultures.

Methods:

Technological Methods:

Preparation of grapefruit juice:

The fruits of grapefruit were washed with tap water, sorted to discard the unripe or spoiled ones, peeled, cut with sharp knife and the juice was extracted by using a domestic juice extractor (Braun model NO: B-2007, 1,750-liter blender chopper safety switch power: 220-240V, 50/60 Hertz, 450 W, Multiple speeds Germany). Grapefruit juice was subjected to filtration through sterilized folded muslin cloth to obtain pure juice.

Processing treatments of grapefruit juice:

The treatments of grapefruit juice; control (untreated), thermal processed and minimal processed are shown in Table (1) the processing was carried out as follows:

Thermal processing (TP) of grapefruit juice:

Thermal processing was applied by using indirect heating of grapefruit juice in a double jacket suit at (90°C/5min.), then packed in clean sterile bottles and cooled to room temperature according to Sorrivas et al. (2006).

Minimal processing of grapefruit juice:

grapefruit juice was firstly sonicated, then treated with UV radiation and finally orangepeel essential oil crude extract (OPE) was added. The processing variables were chosen according to preliminary experiment using the hurdles individually to determine the optimum exposing time / concentration of a hurdle. Minimal processing treatments were achieved as follows:

Sonication treatment:

The fresh cleared grapefruit juice (50 mL batch) was sonicated at 35 kHz frequency for 15 or 30 min. under dark condition, using an ultrasonic cleaning bath (Germany ultrasonic bath D-78224 singen / Htw, HF-frequency 35 kHz) as carried out by Santhirasegaram et al. (2013). The actual power dissipated in the ultrasonic bath was 68–75 W, and the acoustic energy density was 1.36–1.44 W/cm², which was determined by calorimetric method (Gogate et al., 2011).

UV treatment:

Grapefruit juice samples were exposed to UV light in batch system for 15 or 30 min. by using a germicidal fluorescent UV lamp (30 W, 89.3 cm length, 2.5 cm diameter, Holland) in a laminar flow cabinet according to a modified method of Santhirasegaram et al. (2014) with using a glass rectangle (86.44 cm long, 18 cm wide) instead of petri dishes with keeping the same juice height (0.26 mm), with batch volume (405 mL).The mean of the used UV radiation dose is 3.525 J/m² as determined by Keyser et al. (2008).

Orange peel extract (OPE) addition:
250 µl/100 ml (OPE) were added to the US/UV treated juice, this concentration is determined as the most inhibiting concentration of microbes.

Packaging of grapefruits juice samples:

Untreated, thermally processed and minimally processed juice samples were packaged in sterilized bottles and kept at refrigerated temperature (4°C ±1) until analyzed for physiochemical, microbial and sensorial quality according to Guo et al. (2014).

Physiochemical analyses:

Physiochemical parameters:

pH value, titratable acidity (T.A) and total soluble solids (T.S.S) were determined according to AOAC (2016).

Non-enzymatic browning:

Non-enzymatic browning of undiluted samples was determined according to Ranganna, (1977).

Determination of vitamin C (L-Ascorbic acid):

Ascorbic acid content was estimated in grapefruit juice samples using 2, 6 dichlorophenol-indophenols by a titratable method according to AOAC. (2016) and the result was expressed as mg ascorbic acid / 100 ml sample.

Determination of Total Carotenoids:

Total carotenoids were extracted and determined according to Asker and Treptow (1993)

Determination of total phenolic compounds (TPC):

Total phenolic compounds were determined according to Jaramillo-Flores et al. (2003).

Determination of antioxidant activity:

Antioxidant activities were determined by using 2, 2-diphenyl-1-picyrylhydrazyl (DPPH) radical scavenging method as described by Lee et al. (2007).

Colour determination:

The colour of juice samples was measured using Hunter Lab colour system (Hunter, Lab Scan XE - Reston VA, USA). The instrument was calibrated using a white tile (L*= 92.46; a*= - 0.86; b*= -0.16). Colour values were expressed as L* (lightness or brightness/darkness), a* (redness/greenness) and b* (yellowness / blueness) according to Feng et al. (2013).

Microbiological analyses:

Determination antimicrobial activity of orange peel extract (OPE):

Antimicrobial activity against different microbes such as E. coli, Enterobacter, Pseudomonas aeruginosa, Bacillus subtilis and Aspergillus niger was determined according to Mathur et al. (2011) by using the following concentrations of orange peel extract; 100,150,200 and 250 µl.

Total bacterial, Moulds and yeast counts:

Total bacterial, Moulds and yeasts were carried out by procedures of Hatcher et al. (1992)

Statistical analysis

The data were statistically analyzed by using the Statistical Package for Social Science (SPSS) computer program software; (version 20.0 produced by IBM Software, Inc. Chicago, USA) of completely randomized design as described by Gomez and Gomez, (1984).

RESULTS AND DISCUSSION

Antioxidants content and antioxidant activity of orange peel extract (OPE):

Table (2) shows the orange peel extract content of antioxidants and its antioxidant activity, the results show that orange peel extract contains 55.47 mg/100 ml, 16.10 mg/ml, 163. 25 mg/ml of ascorbic acid, total carotenoids and total phenols respectively, while its antioxidant activity is 91.48%; These results are supported by Hegazy and Ibrahim (2012) and Montero-calderon et al. (2019) since they found that orange peel extract has a high antioxidant activity and contains many active compounds.

Antimicrobial activity of orange peel extract (OPE):

Table (3) shows the antimicrobial activity of orange peel extract (OPE). The results exhibit that orange peel extract has antimicrobial effect on all tested microbes. The antimicrobial activity is increased as the level of orange peel extract is increased, since the highest antimicrobial against tested microbial strains was observed with the highest concentration (250 µl). The same trend was also noticed by both Khandpur and Gogate (2016) and Shehata et al. (2020) since they reported that orange peel extract showed antimicrobial effect on the different microbes.
Effect of minimally processing treatments vs. thermal processing on physiochemical characteristics of grapefruit juice:

The physiochemical characteristics of juices have an important role in their quality, palatability and consumer acceptability, as well as they are related to the healthy safe quality criteria. Table (4) shows the physiochemical characteristics of thermal and minimally processed grapefruit juice samples. The results show that no significant changes between the control, thermal and minimal treatments in pH values (3.14 to 3.20), TA (2.14 to 2.19%) of and TSS (9.34 to 9.37%Brix). These results agree with Kaya et al. (2015) in a study on lemon-melon juice blends treated with UV and Yuk et al. (2014) for thermally treated orange juice.

Table (4) shows the non-enzymatic browning index (NEBI) which indicates darkening of grapefruit juice as a result of Maillard reaction, which subsequently causing colour and nutrients deterioration (Caminiti et al., 2011). Table (4) indicates a significant increment (p< 0.05) in the NEBI of thermally processed juice (0.396) as compared to the control (untreated) (0.243). It is clear that thermal processing of juice enhances Maillard reaction, which consequently darkens the colour of the juice. Similarly, Bull et al. (2004) observed a significant browning in the thermally treated orange juice.

On the other hand, minimally processed juice samples showed a slight increase in NEBI when compared to thermal processing sample (0.396). From the data UV15/US15/OPE and UV15/US30/OPE showed a slight increase in NEBI contents; 0.251 and 0.277 respectively, while juice samples, UV30/US15/OPE and UV30/US30/OPE exhibit high NEBI contents, 0.282 and 0.318 when compared to the control sample (0.243). This agrees with Caminiti et al. (2011) who stated that non–thermal processing methods, protect the colour of apple and cranberry juice blends from darkening.

Effect of minimally processing treatments vs. thermal processing on the content of antioxidants and antioxidant activity of grapefruit juice:

Table (5) shows the changes occurred in ascorbic acid content as a function of thermal and minimally processing of grapefruit juice. The results indicate that thermal or minimally processing significantly decreased (p< 0.05) ascorbic acid content of grapefruit juice. The highest reduction of ascorbic acid content was noticed for thermally processed juice sample (63.8%) as compared to the control sample, which is due to the oxidation of ascorbic, because of its heat-sensitivity in presence of oxygen (Oms-Oliu et al., 2012). So, it is the most labile vitamin and considered as an appropriate indicator for monitoring quality changes during food processing and storage (El-Damaty et al., 2018). These results are similar to that obtained by Goh et al. (2012) who recorded that thermally processing of pineapple juice reduces ascorbic acid content as compared to control and UV treated ones. The lowest degradation of ascorbic acid (11.11%) was observed for UV15/US15/OPE sample which has ascorbic acid content, 33.20 mg/100 ml, while the highest degradation (20.50%) was observed for UV30/US30/OPE sample. The degradation of ascorbic acid occurs mainly by enzymes (Oms-Oliu et al., 2012), formation of hydroxyl radicals by UV radiation and also bubble explosion by sonication (Bhat et al., 2011a).

Regarding carotenoids content of thermal and minimally processed juice samples. Table (5) shows that thermal processing significantly decreases (p < 0.05) in carotenoid content (58.12 mg/100 ml) as compared to the control sample (98.11 mg/100 ml). The decreasing of total carotenoid content may be due to that high temperature promotes isomerization of carotenoids, oxidation, and forming of epoxides (Rodríguez-Amaya, 1997). These results are on the line with that obtained by Goh et al. (2012) who reported a significant degradation of carotenoids in thermally processed pineapple juices.

In contrast, minimally processing increases the carotenoid content. The UV15/US15/OPE sample showed the highest increment ratio in carotenoids (13.9%). These phenomena were due to the sonochemical and UV photochemical reaction which improve the extraction of free carotenoids (Demirdoven and Baysal, 2008 and Oms-Oliu et al., 2012).

Also, Table (5) shows the effect of thermal and minimal processing on total phenolic contents of grapefruit juice. The results show that the thermal processing results in a significant reduction in phenolic compounds content (37%), which on the line with the results that obtained by Santhirasegaram et al. (2014) who reported that thermal processing of mango juice caused a significant decrease of polyphenols content. Similarly, Bhat et al. (2011b) found that thermal pasteurization caused a significant reduction (38%) in total polyphenol content in star fruit juice.
In contrary, minimally processing caused an increment in polyphenols content ranged from 24 to 38.3% as compared to the control. The highest polyphenols content (102.94 mg GAE/100 ml) was recorded for UV15/US30/OPE sample. These results are in agreement with Abid et al. (2014) who reported that the extractability of phenolic compounds significantly increased in sonicated apple juice. Also, Ashokkumar et al. (2008) reported that formation of free radicals by cavitation improves the extractability polyphenols. Also, UV and ultrasound destroyed polyphenol oxidase enzyme, which protects phenolic compounds (Oms-Oliu et al., 2012). The same trend was noticed in starfruit juice after treated with UV by Bhat et al. (2011b).

Also, Table (5) shows the changes in the antioxidant activity measured by DPPH. The results indicated that significant reduction was observed in DPPH for thermally processed grapefruit sample (47.59 %) as compared to the control sample (68.38 %). These results agree with Santhirasegaram et al. (2013) who observed that heat processing of mango juice is significantly reduce the antioxidant activity. On other hand, all minimally processed grapefruit samples showed significant increases in DPPH % as compared to the control. The highest DPPH (72.63 %) was recorded for UV15/US15/OPE sample.

Effect of minimal processing treatments vs. thermal processing on colour of grapefruit juice:

Table (6) shows the effect of thermal and minimal processing on the colour of grapefruit juice. The results show that there are significant differences (p< 0.05) in colour of juice samples since decreases in lightness (L*) and in redness (a*) and yellowness (b*) were observed in all treatments as compared to the control. The decrease in L* values could be attributed to the brightening effect of juice due to cavitation collapse of bubbles during sonication and UV photo-degradation of coloured compounds (Bhat et al., 2011b and Tiwari et al., 2008). The results align with NEBI results, the decrease in (b* and L*) values explain the darkening of juice colour. The decrease in b* value may be due to act of isomerizes on carotenoids, as mentioned by Rattanathanalerk et al. (2005).

Minimally processed samples showed lower variation as compared to the control sample. However, an increase in ΔE is observed as the ultrasonic treatment time increased, regardless of the UV treatment. Thus, sonication could be responsible for juice colour degradation Cheng et al. (2007).

Effect of minimal processing treatments vs. thermal processing on microbial inactivation of grapefruit juice:

Table (7) shows the effect of minimal and thermal processing on the growth of microbes in grapefruit juice. The results indicate that thermal processing was completely inhibiting coliform, total bacterial, yeast and mould in grapefruit juice. This is aligned with the finding of Noci et al. (2008) who reported that microbial count is reduced to below detection limit (<1 log CFU/mL) in thermally processed apple juice. The results also show that minimally processed grapefruit juice sample was free from coliform.

Regarding bacterial, mould and yeast counts, the thermal and minimal processing treatments except UV15/US15/OPE caused complete inhibition the microbial growth. This could be explained by the effect of cavitation bubbles which generates high- pressure and temperature, resulting in destroying of the microbial cells (Zupanc et al., 2019). Additionally, absorption of UV ray causes formation of cross-links between pyrimidine bases on the same DNA strand, which inhibit microbes (Pala and Toklucu, 2013 and Walkling-Ribeiro et al., 2008).

Table (8) shows means of sensory characteristics evaluation of thermal and minimally processed grapefruit juice samples as compared to fresh untreated control sample. The control sample was recorded the highest scores (p< 0.05) for all sensory characteristics, while thermally processed samples showed the lowest scores which indicates that thermal processing adversely affect the sensorial characteristics of grapefruit juice, which is supported by results of Sentandreau et al. (2005) who observed that fresh taste of thermally processed citrus juices is decreased as compared to control. Also, Pala and Toklucu (2013) reported significant lower scores for sensory attributes (flavour and aroma) for thermally processed orange juice.

On the other hand, minimally processed grapefruit juice samples showed lower variation from control in all sensory characteristics, which is increased as the time of treatment is increased. These results are on the line with that obtained by Caminiti et al. (2011) who reported significant lower scores for odour and flavour of ultrasonic-treated apple and cranberry juice blends.
CONCLUSION

Finally, minimal processing using UV treatment, sonication and orange peel extract in combination can be used to preserve grapefruit juice with keeping the physicochemical, microbiological and sensorial quality characteristics.

REFERENCES

El-Damaty, E.A., Mohamed, M.S., Ammar, M.S., Foda, A.H. 2018: Effect of preservation methods on chemical composition, minerals and vitamins bioavailability and active compounds content of apricot. 1st International Scientific Conference “Agriculture and Futuristic Challenges” Faculty of Agriculture Cairo, Al-Azhar University, Nasr City, Cairo Egypt April 10 th – 12 th, 2018, (I(I)): 912-926.

Feng, M., Ghafoor, K., Yang, B.K., Park, J. 2013: Effects of ultraviolet-C treatment in Teflon-coil on microbial populations and physicochemical characteristics of watermelon juice. *Innovative Food Science and Emerging Technologies*, 19:133–139.

Gogate, P.R. 2011: Hydrodynamic cavitation for food and water processing, Food Bioprocess Technology, 4:996–1011.

Pala, C.U., Toklucu, A.K. 2013: Microbial, physiochemical and sensory characteristics of UV-C processed orange juice and its microbial stability during refrigerated storage. LWT Food science and technology, 50: 426–431.

Santhirasegaram, V., Razali, Z., Somasundram, C. 2013: Effects of thermal treatment and sonication on quality attributes of Chokanan

281

Table 1: Processing treatments of grapefruit juice.

<table>
<thead>
<tr>
<th>Treatments*</th>
<th>Thermal processing</th>
<th>Minimal processing treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UV (min.)</td>
<td>US (min.)</td>
</tr>
<tr>
<td>Control</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TP</td>
<td>90°C /5 min</td>
<td>0</td>
</tr>
<tr>
<td>UV15/US15/OPE</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>UV15/US30/OPE</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>UV30/US15/OPE</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>UV30/US30/OPE</td>
<td>0</td>
<td>30</td>
</tr>
</tbody>
</table>

*Control: raw juice untreated; TP: thermal processed; UV/US/OPE: minimally processed.

Table 2: Antioxidant compounds content and antioxidant activity of orange peel extract:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascorbic acid (mg/100 ml)</td>
<td>55.47</td>
</tr>
<tr>
<td>Total carotenoids content (mg/100 ml)</td>
<td>16.10</td>
</tr>
<tr>
<td>Total phenols content (mg/100 ml)</td>
<td>163.25</td>
</tr>
<tr>
<td>Antioxidant activity (%)</td>
<td>91.48</td>
</tr>
</tbody>
</table>

Table 3: Antimicrobial activity of orange peel extract (OPE) against different bacteria species:

<table>
<thead>
<tr>
<th>Concentration Of OPE (µl)</th>
<th>E. coli</th>
<th>Enterobacter</th>
<th>Pseudomonas aeruginosa</th>
<th>Bacillus subtilis</th>
<th>Aspergillus niger</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>6</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>150</td>
<td>7</td>
<td>6</td>
<td>10</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>200</td>
<td>9</td>
<td>8</td>
<td>13</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>250</td>
<td>13</td>
<td>11</td>
<td>16</td>
<td>14</td>
<td>9</td>
</tr>
</tbody>
</table>

*OPE (orange peel extract).
Table 4: Effect of combined minimal processing treatments vs. thermal processing on physiochemical analysis of grapefruit juice:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Treatment</th>
<th>Control</th>
<th>TP</th>
<th>UV15/US15/OPE</th>
<th>UV15/US30/OPE</th>
<th>UV30/US15/OPE</th>
<th>UV30/US30/OPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH</td>
<td>3.20±0.02</td>
<td>3.18±0.03</td>
<td>3.15±0.04</td>
<td>3.14±0.06</td>
<td>3.16±0.03</td>
<td>3.16±0.04</td>
<td></td>
</tr>
<tr>
<td>T. A (%)</td>
<td>2.17±0.03</td>
<td>2.14±0.02</td>
<td>2.17±0.04</td>
<td>2.19±0.03</td>
<td>2.18±0.05</td>
<td>2.16±0.03</td>
<td></td>
</tr>
<tr>
<td>T.S. S (Brix)</td>
<td>9.37±0.04</td>
<td>9.36±0.06</td>
<td>9.36±0.03</td>
<td>9.37±0.05</td>
<td>9.35±0.04</td>
<td>9.34±0.07</td>
<td></td>
</tr>
<tr>
<td>NEBI</td>
<td>0.243±0.015</td>
<td>0.396±0.014</td>
<td>0.251±0.012</td>
<td>0.277±0.010</td>
<td>0.282±0.013</td>
<td>0.318±0.015</td>
<td></td>
</tr>
</tbody>
</table>

Values followed by different letters within the same Raw are significantly different (p< 0.05). T.S.S: Total soluble solids (Brix); T. A: Titratable acidity (%); NEBI: non-enzymatic browning index.

Table 5: Effect of minimal processing treatments vs. thermal processing on antioxidant compounds contents and antioxidant activity of Grapefruit juice:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Treatment</th>
<th>Control</th>
<th>TP</th>
<th>UV15/US15/OPE</th>
<th>UV15/US30/OPE</th>
<th>UV30/US15/OPE</th>
<th>UV30/US30/OPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascorbic acid (mg/100g)</td>
<td></td>
<td>37.35±0.15</td>
<td>13.52±0.11</td>
<td>33.20±0.13</td>
<td>32.92±0.16</td>
<td>33.07±0.12</td>
<td>29.69±0.10</td>
</tr>
<tr>
<td>Total carotenoid content (mg/100mL)</td>
<td></td>
<td>98.11±0.44</td>
<td>58.12±0.40</td>
<td>111.74±0.47</td>
<td>111.25±0.43</td>
<td>107.65±0.49</td>
<td>104.62±0.38</td>
</tr>
<tr>
<td>Total phenolic Content (mg/100mL)</td>
<td></td>
<td>74.42±0.31</td>
<td>46.84±0.29</td>
<td>98.47±0.28</td>
<td>102.94±0.36</td>
<td>97.65±0.39</td>
<td>92.28±0.34</td>
</tr>
<tr>
<td>Antioxidant activity (%)</td>
<td></td>
<td>68.38±0.27</td>
<td>47.59±0.12</td>
<td>72.63±0.18</td>
<td>70.93±0.29</td>
<td>69.92±0.24</td>
<td>69.11±0.16</td>
</tr>
</tbody>
</table>

Values followed by different letters within the same Raw are significantly different (p< 0.05).

Table 6: Effect of minimal processing treatments vs. thermal processing on color of grapefruit juice:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Treatment</th>
<th>Control</th>
<th>TP</th>
<th>UV15/US15/OPE</th>
<th>UV15/US30/OPE</th>
<th>UV30/US15/OPE</th>
<th>UV30/US30/OPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>L*</td>
<td>27.06±0.24</td>
<td>25.06±0.21</td>
<td>26.77±0.23</td>
<td>26.62±0.20</td>
<td>26.41±0.22</td>
<td>26.07±0.21</td>
<td></td>
</tr>
<tr>
<td>a*</td>
<td>9.87±0.06</td>
<td>6.43±0.01</td>
<td>9.14±0.07</td>
<td>9.18±0.09</td>
<td>9.08±0.06</td>
<td>8.05±0.08</td>
<td></td>
</tr>
<tr>
<td>b*</td>
<td>11.53±0.11</td>
<td>10.29±0.17</td>
<td>11.49±0.10</td>
<td>11.44±0.12</td>
<td>11.37±0.11</td>
<td>11.14±0.13</td>
<td></td>
</tr>
<tr>
<td>∆E</td>
<td>—</td>
<td>4.14±0.10</td>
<td>0.78±0.06</td>
<td>0.86±0.07</td>
<td>1.06±0.08</td>
<td>2.15±0.05</td>
<td></td>
</tr>
</tbody>
</table>

Values followed by different letters within the same Raw are significantly different (p< 0.05).

Table 7: Effect of minimal processing treatments vs. thermal processing on microbial inactivation analysis of Grapefruit juice (log CFU/mL):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Treatment</th>
<th>Control</th>
<th>TP</th>
<th>UV15/US15/OPE</th>
<th>UV15/US30/OPE</th>
<th>UV30/US15/OPE</th>
<th>UV30/US30/OPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coliform count</td>
<td></td>
<td>0.95</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Total bacterial count</td>
<td></td>
<td>2.25</td>
<td>Nil</td>
<td>1.26</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Mould and Yeast count</td>
<td></td>
<td>2.54</td>
<td>Nil</td>
<td>1.54</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
</tbody>
</table>

283
Table 8: Effect of combined minimal processing treatments vs. thermal processing on sensory evaluation of grapefruit juice:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Treatment</th>
<th>Control</th>
<th>TP UV15/US15/O PE</th>
<th>UV15/US30/O PE</th>
<th>UV30/US15/O PE</th>
<th>UV30/US30/O PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td></td>
<td>8.60±0.18</td>
<td>5.40±0.15</td>
<td>7.90±0.14</td>
<td>7.50±0.10</td>
<td>7.40±0.13</td>
</tr>
<tr>
<td>Taste</td>
<td></td>
<td>8.40±0.16</td>
<td>5.30±0.19</td>
<td>7.40±0.12</td>
<td>7.30±0.14</td>
<td>7.10±0.10</td>
</tr>
<tr>
<td>Odor</td>
<td></td>
<td>8.50±0.17</td>
<td>5.10±0.17</td>
<td>7.80±0.13</td>
<td>7.20±0.11</td>
<td>6.90±0.12</td>
</tr>
<tr>
<td>Consistency texture over all acceptability</td>
<td></td>
<td>8.30±0.14</td>
<td>6.30±0.12</td>
<td>7.95±0.10</td>
<td>7.40±0.13</td>
<td>7.80±0.11</td>
</tr>
<tr>
<td>Flavor</td>
<td></td>
<td>8.40±0.15</td>
<td>5.60±0.18</td>
<td>7.70±0.11</td>
<td>7.30±0.12</td>
<td>7.40±0.13</td>
</tr>
</tbody>
</table>

Values followed by different letters within the same Raw are significantly different (p<0.05).

تأثر معالات التصنيع البسيطة مقارنة بالمعالجة الحرارية على خصائص الجودة لعصير الجريب فروت

علي حسن فودة،* سيد عبد الحميد السالمي،+ أحمد جبريل عباس.2

*قسم علوم وتقنية الغذاء، كلية الزراعة، جامعة الزهر، القاهرة، مصر.
+قسم الزراعة، مركز بحوث الصحراء، القاهرة، مصر.

البريد الإلكتروني للباحث الرئيسي: Alifoda88@azhar.edu.eg

الخلاص:

أجريت هذه الدراسة لتقييم تأثير استخدام معالات مدمجة بين الأشعة فوق البنفسجية وفوق الصوتية ومضخة العاكس مع الجريب فروت وتأثير ذلك على الخصائص الفيزيوكيميائية والكيميائية والجودة لعصير الجريب فروت. وكانت عصير الجريب فروت غير معال (كنترول) مع عصير المعال بالحرارة (90 °C/25 دقيقة) وكهف معال بتصنيع بسيط مدمج (موجات فوق الصوتية بتردد 35 كيلو هرتز عند 25 درجة مئوية لمدة 15 و 30 دقيقة - معاللة بالأشعة الفوق البنفسجية معدلة 3525 كيلو هرتز عند 25 درجة مئوية لمدة 15 و 30 دقيقة - معالجة بمضخة الأكسير في عصير المعال بمعاللة التصنيع البسيطة). وقد أظهرت النتائج أن المعال بالحرارة ومعالبات التصنيع البسيطة لم تؤثر على خصائصه الفيزيوكيميائية، ولكن تأثرت حمض الأكسير في عصير المعال مع عصير المعال بالحرارة (11.11/20.5 %) وكان أقل تدهوراً عن العصير المعال بالحرارة (63.8 %). وقد تأثرت هاصل استخلاص الكاروتين والبوليفينولات في عصير المعال مع عصير المعال بالحرارة (11.11/20.5 %) وكان أقل تأثيراً عن العصير المعال بالحرارة (63.8 %). وقد تأثرت هاصل استخلاص الكاروتين والبوليفينولات في عصير المعال مع عصير المعال بالحرارة (11.11/20.5 %) وكان أقل تأثيراً عن العصير المعال بالحرارة (63.8 %). وقد تأثرت هاصل استخلاص الكاروتين والبوليفينولات في عصير المعال مع عصير المعال بالحرارة (11.11/20.5 %) وكان أقل تأثيراً عن العصير المعال بالحرارة (63.8 %). وقد تأثرت هاصل استخلاص الكاروتين والبوليفينولات في عصير المعال مع عصير المعال بالحرارة (11.11/20.5 %) وكان أقل تأثيراً عن العصير المعال بالحرارة (63.8 %). وقد تأثرت هاصل استخلاص الكاروتين والبوليفينولات في عصير المعال مع عصير المعال بالحرارة (11.11/20.5 %) كان أقل تأثيراً عن العصير المعال بالحرارة (63.8 %). وقد تأثرت هاصل استخلاص الكاروتين والبوليفينولات في عصير المعال مع عصير المعال بالحرارة (11.11/20.5 %) كان أقل تأثيراً عن العصير المعال بالحرارة (63.8 %).

الكلمات الرئيسية: المعال بالحرارة، الأشعة فوق البنفسجية، الموجات فوق الصوتية، معالبات التصنيع البسيطة، عصير الجريب فروت