The technological value determination of some long staple Egyptian cotton varieties by using some mathematical analysis models

A. F. Younes¹, M. S. Salem^{2,*}, E. A. Mesbah², I. A. Ebaido², and A. A. Hassan³

¹ Grading Section. Cotton Research Institute, Agriculture Research Center, Giza, Egypt.

² Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt.

³ Spinning Department Cotton Research. Institute, Agriculture Research Center, Giza, Egypt.

*Corresponding author E-mail: mohamedsherien <u>205@azhar.edu.eg</u> (A. Younes)

ABSTRACT:

This study was carried out in the Laboratories of Cotton Grade Section, Cotton Research Institute, Agricultural Research center, Giza, Egypt and spinning unit of Industrial Menia EL- Kameh, EL-Sharkia Governorate, Egypt in 2016 and 2017 seasons, to investigate the relationships between fiber properties and lea product, single yarn strengths and unevenness at 40's and 60's yarn count at 3.6 twisting index for Giza 86,Giza90 and Giza95 cotton varieties, with using FQI, SCI, PDI and MIAHP as mathematical models. The technological values were estimated by four models correlated positively with high significant and each of lea product and single yarn strengths, in both seasons. On the contrary, this correlation was negative with the regular percentage for Giza 86 and Giza 95 varieties, SFC, UHML, FS and the Mic value had the highest contribution toward yarn quality properties at 40's and 60's Y.C for the studied varieties.

Keywords: Cotton, Long staple Egyptian cotton var., Technological value - Statistical Models analysis.

INTRODUCTION

Cotton is a natural fiber that have great diversity in its properties. Most of these properties play an important role in predicting and determining the spinning characteristics. Spinning cotton fiber is considered one of the most important operations to produce the yarns. Its stage depends on multiple steps that require time-consuming, the efficiency of spinning machines that differed from one factory to another and modern or old fashion for the techniques as well as the used machines. Therefore, several researches are directed to eliminate these obstacles and make the best use of statistical approaches and mathematical prediction equations to short cut the long period for spinning cotton fibers and make the decision for the superiority of multiple model equations under the study that differed between cotton species and production through location creating relationship between fiber properties and yarn quality that are represented by regression and correlation equations which are angle stone for these prediction models. El-Mogazhy et al. (1990). suggested a Premium-Discount index (PDI) through developing statistical approach that depends on model relating fiber to varn properties. Majumdar. et al. (2005). compared three traditional methods to determine technological value of cotton fiber. These methods were Fiber Quality index (FQI), the Spinning Consistency index (SCI) the

raits,

Premium-Discount index (PDI) and the new method that has been proposed based on Multiple-Criteria Decision-Making (MCDM) technique. They found that the decision-maker plays a key role in determining the criteria weights in the proposed multiplicative AHP method. They indicated that the Premium-Discount Index method shows maximum rank correlation between the technological value of cotton and yarn tenacity. Also, Ureyen and Kadoglu (2007), indicated that the relationship between yarn properties as dependent variables and fiber traits as indecent variable are nearly linear for each yarn property. choose multiple Therefore, we linear regression. Hager et al. (2011), found that the Fiber strength and Fineness were the most effective fiber properties to predict yarn properties for the category of Extra-long staple under ring spinning system, while, the Upper half mean length, Fiber strength and Maturity had the greatest influence on the studied yarn properties for the long staple cotton category. Fares and Hassan (2015) found that all the supposed models of regression were significant and they reflected large part of variation of the studied yarn properties. Mesbah and Hassan (2016), published that positive highly there were significant correlation between Single yarn strength and each of Upper half mean, Fiber strength and Fiber elongation %. On the same trend, between yarn evenness and most studied fiber traits, at 80's, 100's, 120's and 140's yarn count

for Extra-long staple Egyptian cotton varieties, on the same line, Abdel Daim et al. (2020) indicated that Fiber strength, Upper half mean length, Uniformity index and short fiber index plays an important role in determining technological value of cotton, while, the fiber fineness and fiber elongation had low influence under a Multi Criteria Decision Making (MCDM). Consequently, this study aimed to determine the technological value or to illustrate the relation between fiber properties and yarn quality properties of some long staple Egyptian cotton varieties by using some models of analysis.

MATERIAL AND METHODS

This investigation was conducted during 2016 and 2017 seasons at cotton Grade Section, cotton Research Institute, Giza, Egypt to study the relationship between fiber properties and yarn quality traits (Lea product, Single yarn strength "cN/tex" and Unevenness "cV%") at 40's and 60's yarn count for three long Egyptian Cotton varieties (Giza 86, Giza 90 and 95), in the presence of 3.6 twisting index through the ring spinning system. These treatments were arranged in completely randomized design with factorial analysis in the presence of three repetitions samples for each grade (FG, G, FGF and GF), also variety under the study to analyze the effects of spinning variables as well as their interactions on yarn quality properties. The obtained data were subjected to statistical analysis according to the procedure outlined by Snedecore and Chocran (1981). The different data means of each variety were analyzed separately. Least significant difference at 5% probability level was used for comparing the different means. Eventually, it could be compared between the cotton yarn properties resulted from traditional spinning method and the value estimated by prediction equations as well as the correlation or approaches between them.

The studied traits:

These traits were determined by weighting 10 g from each sample, grade and variety.

Fiber quality properties:

Upper Half Mean Length (UHML) mm	(X1)
Length uniformity percentage (U%) Short fiber content (SFC)	(X2) (X3)
Micronaire value (Mic.).	(X4)
Maturity ratio (MR%)	(X5)
Fiber strength (F.S. g/tex)	(X6)

Fiber elongation (FE%)

(X7)

were determined by using Cotton Classification System (CCS) and High-Volume Instrument (HVI) as obtained Ebaido et al. (2017).

All fiber tests were carried out at the Grading Section. at cotton Res. Inst., Agric. Res. Center, under controlled conditions of $65\% \pm 2^{\circ}$ relative humidity and temperature of $20 \pm 2^{\circ}$, where cotton spinning process as ring system (5 kg for each sample) on two yarn counts (40's and 60's) was detected in spinning unit of Industrial Menia El-Kameh El-Sharkia Governorate, Egypt.

Yarn quality properties:

To study the yarn quality traits, carded yarns of 20 texliner density at twist factor (3.6) were spun from long staple Egyptian cotton varieties (Giza 86, Giza 90 and Giza 95) to determine the following yarn properties:

Lea product, (Y1). It was measured by using Good Brand Lea tests according to ASTM (D-1598-93Roo).

Single yarn strength, (Y₂). It was estimated by using Uster Automatic, where 120 breaks were taken from the tested samples, according to ASTM (D-2256-67).

Yarn Unevenness (cV%), (Y₃). It was calculated by using Uster tester III, according to ASTM (D-2256-67).

Determination of yarn quality by using the prediction equations for different varieties under study: This investigation concluded four models as follow:-

Fiber quality index (FQI):-

This model had been chosen for its newless and simplicity.

 $FQI = UHM \times UI \times STRf \times (1+EL) \times (1-SF) / MIC$

El-Messiry and Abd- Ellatif (2013).

Spinning Consistency Index (SCI):-

It is a linear regression equation that included the most HVI measurements for calculating the prediction of the quality and spin ability of the cotton fiber

SCI = - 414.67 + 2.9 STR+ 49.17 UHML+ 4.74 UI - 9.32 Mic + 0.95

Rd% + 0.36 (+b) (Uster, 1999).

Premium Discount Index (PDI):-

It is a linear equation that contains the difference factor (D) for the fiber properties (UHML, F.S, F.FL, UI, SFC and MIC) and the standardized ((β)) Coefficient value (22.15, - 4.75, - 4.37, 11.19, - 20.68, - 7.8) for each fiber properly.

PDI= 22.15 x STR - 4.75 x EL - 4.37 x UHML+ 11.19 x UI - 20.68 xSFC-7.8 x MIC. (*Majumdar et al.* 2005)

Multiplicative Analytic Hierarchy Process MCDM or (MIAHP)

It consists of fractional exponential equation included fiber properties (F.STR, F. EL, UHM, UI, MIC. And SFC.). The exponent for each fiber property defines its importance in quality of cotton fiber as follow:-

MIAHP=*STR*^{0.27}**El*^{0.039}**UHM*^{0.291}**UI*^{0.145}/ *Mic*^{0.11} * *SFC*^{0.143}

RESULTS AND DISCUSSION

Table (1): Exhibited the fiber properties through the four studied grades for (Giza 86, Giza 90 and Giza 95) varieties during 2016 and 2017 seasons that were considered as inputs for the results of the prediction equations.

Coefficient of correlation between the four studied models equation and yarn quality traits under the two yarn counts for some long staple Egyptian cottons varieties manufactured by ring spinning system in 2016 and 2017 seasons are presented in Table (2).

Considering Giza86 cultivar results in Table (2) indicated that there was positive and highly significant rank correlation (0.977** and 0.955**) between the application of MI_{AHP} model equation and Lea product in both seasons., respectively.

As for Single Yarn Strength (SYS) its value was positive and highly significant correlated (0.990** & 0.973**) with MIAHP models in 2016 and 2017 season. On the other hand, there was a negative highly significant correlation between Giza 86 variety (-0.945**and-0.979**) and MIAHP model equation due to Unevenness property in the two seasons.

With respect to Giza 90 var., the values estimated by PDI, SCI and FQI models equation gave the highest significant correlation (0.990**and 966**) with Lea product in the first and second seasons, respectively. On the same trend, MIAHP model equation gave the highest positively correlation (0.971** and 0.950**) with Single Yarn Strength (SYS) in both seasons. On the other hand, there was a negative highly significant (- 0.944**and-0.944**) between MIAHP model equation and Unevenness property.

For Giza 95 var., PDI and MIAHP models equation gave positive highly significant correlation (0.947**, 0.981**, 0.954** and 0.966**) with Lea product and Single Yarn Strength (SYS) traits, respectively. On the other hand, there was a negative highly significant correlation (- 0.933** and - 0.934) between the application of MIAHP model and yarn Unevenness trait in the two seasons.

From Table (2) it could be indicated that (FQI) model equation gave the lowest correlation values for Lea product and Single Yarn Strength traits in both seasons. These results were in agreement with those obtained by El-Mogazhy et al. (1990) who found that the maker plays role indicator mining the criteria weights in the proposed multiplicative MIAHP model equation. They also indicated that (PDI) model equation shows the maximum rank correlation between technological value of cotton and yarn tenacity. Ureyen and Kadoglu (2007) also found that the correlation between yarn properties as independent variable and fiber traits as indecent variable are nearly linear for each yarn property.

The results of multiple linear regression analysis between Lea product, Single Yarn Strength as well as Unevenness (cV%) under two yearn counts (40's and 60's) (depended variable) and long Egyptian cotton fiber properties under study (explanatory variables) are presented in Tables (3 and 4) in 2016 and 2017 seasons.

The results indicated that the supposed multiple regression models were significantly contributed the most variability of the three above mentioned yarn properties. Statistically, goodness of fit was satisfied for the three multiple regression models for each yarn property, each cotton variety under the study and for each yarn count, where more than 80% of Lea product, Single Yarn Strength and Unevenness (cV%) explained as R²% was attributed to the fiber properties for the two yarn count. Also, it was interesting to note the negative relation between above studied yarn properties and some of fiber ones that differed between the varieties in the first season, the contribution of the most fiber properties in yarn quality traits was significant, with the exception of

Y1M1 = 58083.354 - 851.799 UHM - 413.319 UI - 443.856 SFC+ 6483. 121Mic - 25821.81MR -98.611FS + 476.717 EL, That was insignificant contribution (0.168) at 40's yarn count for Giza95 var., same trend had been detected at 60's yarn count with the exception of

Y₃M₃=122.428-0.076UHM-1.707UI-0.016SFC+ 10.920 Mic -15.096MR - 257 FS + 2.376 El.,

Which was insignificant contribution (0.129) for Giza 95 var. during 2016 season.

As for 2017 season, at 40's yarn count, all models equations, that contained some of fiber properties are significant contribution, where $R^{2}\%$ ranged between 0.912 up to 0.996% with the exception of Y₃M₃, which ,the level of significance was (0.052) for Giza 95 var.

On the other hand, at 60's yarn count, all the studied models are characterized by significant contribution, for example due to lea product with its equation Y1M1 had the highest value (0.987%) for Giza 90 var., while, the model equation Y2M2 for SYS property was the highest value (0.977%) for Giza 86 var., with addition to, cV% for Giza 95 var. its R²% was (0.964) for Y₃M₃ model equation. The residuals content (1-R²%) may be due to some errors during measuring the fiber and yarn properties, that some fiber properties were not into account under the current investigation and or unknown variation (random error). These results are in agreement with Hager et al. (2011), Fares and Hassan (2015) and Abdel Daim et al. (2020). They indicated that Upper Half Mean Length (UHML), Fiber Strength (FS), Uniformity index and Short Fiber index play an important role in determining technological value of cotton under Multi Criteria Decision Making (MCDM) model.

Stepwise multiple regression parameters of Lea product, Single yarn strength and Unevenness (cV%) using seven fiber properties for some long staple Egyptian cotton varieties (Giza 86, Giza 90 and Giza 95) manufactured by ring spinning system are presented in Tables (5 up to 8).

From these Tables, we can get the available or suitable equation to determine (R²%) and rank of contribution of the studied fiber traits to Lea product, Single yearn strength and Unevenness (cV%) within 40s yarn count for long staple varieties.

as for the stepwise multiple linear regression, results in Tables (5 and 6) showed that the accepted limiting properties of cotton fibers were significantly accounted for most variation of Lea product (Y1) at 40's count of Giza 86 var. they were Short fiber content (SFC) (X₃), Fiber strength (FS) (X₆) and Fiber elongation (FEL) (X₇), that the value of coefficient of determination R² for these trait was 0.983, as well as, same the traits rank of contribution due to Lea product (Y₁) for Giza 90 var., the highest value for coefficient of determination (R²%) was (0.986), while₇ most of the traits that contributed in lea product of Giza 95var. were X₁, X₂ and X₄, that the maximum value of (R²%) was (0.932), during 2016 season with model 1 equation.

On the same trend, contributors' fiber traits are important due to Single yearn strength (Y₂) at 40's yarn count for Giza 86 var. were X₃, X₅ and X₆, had the highest value of (R²) being (0.993) while fiber traits are important for Single yarn strength for Giza 90 var. were X₁, X₄ and X₇, that the maximum value of (R²) that was (0.973), as well as, contribution traits for Giza 95 var. that was the same traits for Giza 90 var. That (R²) value was (0.982) in 2016 season with model 2 equation.

With regard to the important contributor fiber traits due to Unevenness (cV%), (Y3) at 40's count for Giza 86, Giza 90 and Giza 95 varieties they were Upper Half Mean Length (UHML) (X1), short fiber content (SFC) (X3), Micronair value (Mic) (X4), length uniformity % (U%) (X2), Fiber strength (FS) (X6) and Fiber elongation % (FE) (X7), that the maximum values for (R²) were (0.981, 0.905 and 0.857) respectively with model 3 equation through 2016 season.

Concerning the stepwise multiple linear regression in 2017 season, results in Table (8) indicated that limiting properties of cotton fiber is characterized by a significant contribution for the studied yarn quality traits.

The important fiber traits contribution due to Lea product (Y₁), at 60's count for Giza 86, Giza 90 and Giza 95 varieties were Short Fiber Content (SFC) (X₃), Upper Half Mean Length (UHM) (X₁), Micronair value (MIC) (X₄), Maturity ratio (MR) (X₅) and Fiber elongation (FE%) (X₇), that the highest values for (R²%) were 0.931, 0.981 and 0.966, respectively with the application of model I equation.

On the same trend, contribution fiber traits for Single yarn Strength (SYS), (Y₂) at 60's yarn count for the three tested varieties were Short Fiber Strength (X₃), Upper Half Mean Length (X₁), Micronair value (X₄), Uniformity% (X₂) and Fiber elongation % (X₇), respectively, that the maximum values for (\mathbb{R}^2 %) of the studied varieties were 0.961, 0.941 and 0.970, respectively with model 2 equation in the second season.

With respect to the important contributors' fiber traits for Unevenness (cV%), (Y3) at 60's varn count for Giza 86, Giza 90 and Giza 95 var. they were Short Fiber Strength (X₃), Upper Half Mean Length (X1), Micronair value (X4), Uniformity % (X₂) and Maturity ratio (X₅), that the maximum values for (R²%) of the studied varieties were 0.914, 0.901 and 0.944, respectively, with model 3 equation in 2017 season. These results were in agreement with Fares et al. (2010), Hager et al. (2011), Fares and Hassan (2015) and Mesbah and Hassan (2016). They indicated that Upper Half Mean, Fiber Strength, Fiber elongation and Maturity percent were the most effective fiber traits to properties predict yarn quality and technological value for long staple on different yarn counts. Results showed that all the supposed models of regression were significant and reflected large part of the variation of studied yarn traits expressed as high values of R² and near values of the corresponding adjusted R² indicating the validity and goodness of fit for these models.

CONCLUSION

Most of the fiber properties i.e. Upper Half Mean Length, Fiber strength, Maturity percentage and Short fiber content (%) contribute significantly towards cotton yarn study, quality under by using four mathematical models i.e. FQI, PDI, SCI and Previous fiber properties were MIAHP. estimated for the long Egyptian cotton varieties and were considered as inputs to calculate their equations and detected the comparison between the prediction equation results and the obtained ones from ring spinning at 40's and 60's yarn count. The results of prediction equations rely on rank correlation matrix, multiple liner regression analysis and stepwise multiple linear regression analysis that cleared the main fiber properties contribution and the rate of contribution (R²%) that differed with varietal difference. for example, it was found that the main fiber property towards Lea product was UHML for Giza86 var. whereas, it was SFC for Giza 90 var. R²% also varied from one variety to another, being 0.9810% for Giza 86 var. and 0.9549% for Giza 90 var.

REFERENCES

Abd El-Daim, H., Hassan, A.A., Fares, W. M. 2020. Exploitation of the statistical method of Multi-Criteria decision Making (MCDM) to rank cotton in estimating yarn evenness (cV%). Intern. Design J., 10 (1): 413-421.

- A.S.T.M. 1991. American Society for Testing and Material. Standards of textile testing and materials., Philadelphia, pa.
- A.S.T.M. 1986. American Society for Testing and Materials standards of textile materials. The society, Philadelphia, PA.
- Ebaido, I.A.; Hussein, K.M., Abd-Elrahman, Y.Sh. 2017. Analytical study for fiber strength and elongation measurements of Egyptian cotton (Gossypiam barbadense L.). Bull. Fac. Agric., Cairo Univ., 68 (2): 119-131.
- El-Messiry, M., Abd-Ellatif, A.M. 2013. Characterization of Egyptian cotton Fibers. Indian J. fiber and Txt. Res., 109-113.
- El-Mogahzy, Y.; R.M. Broughton and W.K. lynch (1990). Statistical approach for determining the technological value of cotton using HVI fiber properties. Textile Res. J., 60: 495-500.
- Fares, W.M., Hassan, A.A. 2015. Relative importance of fiber properties affecting combed yarns for extra-long fine and extralong in some Egyptian cotton varieties. Egypt J. Appl. Sci., 30 (8): 375-389.
- Fares, W.M., Islam, S.K.A., Hussein, K.M.M., Hassan, A.A. 2010. An application of modern statistical approach to estimate A technological value of some Egyptian cotton varieties. The six inter. Conf. of sustain Agric and Develop., 27-29 December, 43-56.
- Hager, M.A., Hassan, A.A., Fares, W.M. 2011. Some statistical relationships models to predict yarn properties using fiber for two categories of Egyptian cotton varieties under two spinning systems. Agric. Res. J., Suez Canal Univ., 11 (2): 1
- Majumdar, A., Sarker, B., Majumder, P.K. 2005. Determination of the technological value of cotton fiber. A. comparative study of the traditional and multiple-Criteria Decision-Making approaches. Autex Res. J., 5 (2): 71-80.
- Mesbah, E.A.E., Hassan, A.A. 2016. Prediction of yarn properties with using fiber properties for some extra-long staple Egyptian cotton varieties under ring spinning system. Al-Azhar J. Agric. Res., 27: 368
- Snedecor, G.W., Cochran, W.G. 1980. Statistical methods seventh edition. Iowa state Univ. press, Ames, Iowa,
- Ureyen, M.E., Kadoglu, H. 2007.The prediction of cotton ring yarn properties from AFIS fiber properties by using linear regression models. Fibers and text. In Eastern Europe., 15 (4): 63-67.
- Zellweger.Uster. 1999. High Volume Instrument for fiber testing. application handbook of Uster HVI Spectrum.

						2016 Sea	ason					
Var	G	U.H.M (mm)	UI%	SFC	MIC	MR%	F.S (g/tex)	FE%	Rd%	b+	Trb	Tra
	FG	33.02	85.83	3.39	4.78	0.88	43.90	8.77	74.70	8.23	1.00	0.18
	G	32.10	85.37	5.22	4.58	0.86	42.00	8.37	72.50	8.40	1.77	0.37
	FGF	31.31	83.47	6.78	4.40	0.84	38.53	8.00	70.17	8.60	3.77	0.85
	GF	31.06	82.90	8.86	4.30	0.79	36.43	7.53	69.27	8.70	6.38	1.53
G.86		2017 Season										
	G	\downarrow	\downarrow	↓	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
	FG	32.97	85.80	4.21	4.76	0.88	43.30	8.57	74.77	11.40	1.02	0.18
	G	32.07	84.57	5.07	4.62	0.85	42.53	8.30	73.23	11.80	2.58	0.51
	FGF	31.32	82.53	6.74	4.35	0.82	41.00	7.87	71.53	12.17	4.68	0.98
	GF	30.18	81.17	9.48	4.08	0.79	38.63	7.53	68.90	11.87	6.15	1.45
						2016 Sea	ason					
	G	\downarrow	\downarrow	↓	\downarrow	\rightarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
	FG	30.15	85.13	4.46	4.23	0.87	38.50	9.00	62.93	11.57	1.07	0.20
	G	29.43	83.93	6.06	4.06	0.84	37.07	8.40	60.83	11.60	2.13	0.45
	FGF	29.07	83.27	8.16	3.79	0.82	34.43	8.20	58.17	12.00	4.38	0.97
C 00	GF	28.68	82.30	9.84	3.64	0.79	33.30	7.43	56.47	12.07	6.09	1.40
G.90	2017 Season											
	FG	30.05	85.43	3.97	4.43	0.88	39.23	8.53	62.73	11.20	1.13	0.20
	G	29.52	84.67	5.75	4.29	0.86	37.63	8.30	61.07	11.73	2.56	0.50
	FGF	29.14	83.33	8.15	4.11	0.82	35.40	8.07	57.97	12.33	4.86	0.98
	GF	28.42	81.70	10.19	3.79	0.79	31.83	7.83	56.57	12.03	7.10	1.50
						2016 Sea	ison					
	G	↓	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
	FG	30.75	85.67	3.24	4.54	0.86	38.50	8.33	60.90	11.67	1.10	0.20
	G	29.82	84.27	5.56	4.41	0.85	36.83	8.07	59.53	11.83	2.52	0.52
	FGF	28.94	82.60	7.99	4.24	0.82	34.50	7.50	56.50	12.13	4.30	0.95
C 95	GF	28.78	81.67	9.57	4.11	0.79	31.67	7.33	54.33	12.30	6.48	1.47
G.90						2017 Sea	ason					
	FG	31.41	84.80	3.78	4.22	0.87	37.77	8.83	64.73	11.20	1.14	0.21
	G	30.22	83.67	5.94	3.96	0.84	34.40	8.67	62.63	11.53	2.32	0.47
	FGF	29.31	82.77	8.18	3.71	0.82	32.63	8.30	61.03	11.73	4.52	0.96
	GF	28.12	81.80	10.77	3.42	0.78	30.07	7.90	58.10	11.67	7.30	1.61

Table 1:- The difference between t	he three Long Egyptian o	cotton varieties due to the	ir fiber properties
during 2016 and 2017 season.			

Table 2: Rank correlation matrix between the four models' equations and lea product (LP), Single yarn strength (SYS) and yarn unevenness (cV%) for Giza86, Giza90and Giza95 (long Egyptian cotton varieties) during 2016 and 2017 seasons.

Varieties	Madala	2016 Season		2017Season			
(V)	Models	L.p	SYS	cV%	L.p	SYS	cV%
	FQI	0.945**	0.975**	-0.897**	0.915**	0.935**	-0.937**
$C $ $\otimes C$	SCI	0.959**	0.975**	-0.914**	0.942**	0.954**	-0.954**
G.80	PDI	0.983**	0.990**	-0.924**	0.914**	0.952**	-0.956**
	MIAHP	0.977**	0.990**	-0.945**	0.955**	0.973**	-0.979**
	FQI	0.950**	0.919**	-0.862**	0.966**	0.935**	-0.932**
C 00	SCI	0.952**	0.963**	-0.915**	0.966**	0.911**	-0.922**
G.90	PDI	0.990**	0.960**	-0.923**	0.959**	0.941**	-0.941**
	MIAHP	0.967**	0.971**	-0.944**	0.958**	0.950**	-0.944**
	FQI	0.927**	0.916**	-0.898**	0.933**	0.912**	-0.900**
COF	SCI	0.944**	0.950**	-0.917**	0.974**	0.957**	-0.935**
G.95	PDI	0.947**	0.918**	-0.901**	0.981**	0.966**	-0.926**
	MIAHP	0.917**	0.954**	-0.933**	0.968**	0.965**	-0.934**

Yarn properties		el		Go	odness of	fit
		mode	Prediction equation	R ² %	F Value	Sig.
			40's yarn count			
La	G.86		M1=6167.093-57.989UHM+16.488UI-136.098SFC-4.874 MIC-1615.060 MR+18.209FS-171.363FE	.986	40.35	.001
	G.90		M 1=1532.299-111.057 UHM+33.247 UI -34.393 SFC+ 22.400MIC-411.160 MR+ 37.420 FS+38.309FE	.996	156.8	.000
(11)	G.95		M ₁ =58083.354-851.799UHM-413.319UI-443.856SFC+6483.121MIC-25821.81MR-98.611 FS+476.717FE	.830	2.799	.168
CVC	G.86		M 2=-72.524 +1.370UHM+0.782UI+0.782 SFC+0.959 MIC+ 35.916 MR+0.209 FS+1.549 FE	.995	115.9	.000
515	G.90		M 2=-25.065+1.890UHM-0.493 UI-0.002 SFC+3.514 MIC+11.152 MR-0.040 FS+0.263FE	.979	26.86	.003
(Y ₂) G.95			M 2=-107.000+0.370UHM+1.832 UI-0.104 SFC-10.353MIC+ 20.999 MR -0.039FS-1.902 FE	.945	9.863	.022
CV /0/	G.86		M 3=176.319-3.535UHM+0.081UI853SFC-4.148MIC-46.006 MR+0.654 FS-1.807FE	.993	76.95	.000
	G.90		M 3=35.609-1.953 UHM+0.746UI-0.039 SFC-4.090MIC-4.811MR-0.028 FS+219FE	.928	7.340	.036
(¥3)	G.95		M 3=155.311+0.352 UHM-2.639 UI-0.012 SFC+13.903MIC+12.007MR -0.610 FS+3.490FE	.957	12.85	.013
			60's yarn count			
T.e.	G.86		M 1=-4185.418+187.002UHM+1.083UI+ 3.246SFC-110.856MIC+1223.971MR -4.616FS+49.090 FE	.981	29.51	.003
	G.90		M1=-1223.547-44.500UHM+28.851UI-9.517SFC+244.671MIC+1268.935MR+2.264FS+23.879FE	.965	15.59	.009
(11)	G.95		M1=-6488.489-6.429UHM+86.755UI+4.359SFC-2.900MIC+2459.637MR -35.175FS+98.697FE	.988	45.29	.001
61 /6	G.86		M 2=-52.555+0.781 UHM+0.411UI-0.066 SFC-1.198MIC+9.347MR+0.007FS+ 0.547FE	.990	55.58	.001
SYS	G.90		M 2=-27.643+2.930UHM-0.617UI-0.046SFC+1.260MIC175MR+0.119FS-0.364FE	.931	7.758	.033
(Y ₂)	G.95		M 2=-148.801-0.001UHM+2.096UI+0.224SFC-6.248MIC+28.526MR -0.197FS -0.713 FE	.977	24.81	.004
	G.86		M 3=60.538-2.962UHM+1.084UI+0.032SFC-1.529 MIC-49.859MR+0.473FS-0.995FE	.984	35.20	.002
	G.90		M 3=116.650-0.072UHM-1.026UI-0.146 SFC-1.157 MIC-1.218 MR-0.361FS+0.972 FE	.959	13.48	.012
(Y 3)	G.95		M 3=122.428076UHM-1.707UI -0.016SFC+10.920MIC-15.096MR-0.257FS+2.376FE	.855	3.371	.129

Table 3: Multiple linear regression analysis of lea product, Single yarn strength (cN/tex) and Unevenness (cV%) at 40's and 60's yarn count for Giza 86, Giza90 and Giza 95 varieties during 2016.

M1,M2M3 equal Model1, Model2, and Model3

Explanatory variables:-

Upper Half Mean Length(UHML)mm χ_1 X5 X_6

 χ_2 Length uniformity Percentage (U)%

X3 Short Fiber Content(SFC)

 χ_4 Micronaire value (Mic) Maturity Ratio (MR%)

X7

Fiber strength (FS g/tex)

Fiber Elongation (FE %)

Ň		el		Go	odness of	fit
Ya prop	Yarn properties		Prediction equation	R ² %	F Value	Sig.
			40's yarn count			
Im	G.86		M 1=6167.093-57.989 UHM+16.488UI-136.098 SFC-4.874MIC-1615.060MR + 18.209FS -171.363 FE	.986	40.35	.001
	G.90		M 1=4128.590-131.087 UHM+2.226 UI-40.125 SFC-92.869 MIC -743.461MR+36.272 FS +211.479 FE	.963	14.69	.010
(11)	G.95		M 1=-1513.490-27.025 UHM+40.917 UI -14.686 SFC+5.041 MIC+1738.820 MR+.626 FS-20.710FE	.990	55.40	.001
CVC	G.86		M 2=-14.235315UHM + 0.088 UI -0.258SFC+2.938 MIC+22.405 MR-0.119FS +.674 FE	.996	149.3	.000
(\mathbf{x})	G.90		M 2=-15.608+2.809UHM-0.171UI-0.872 SFC-3.257 MIC+33.235 MR -0.445FS- 3.862 FE	.972	19.87	.006
(12)	(Y ₂) G.95		M 2=-62.220-1.863UHM+1.444UI -0.345 SFC+0.296 MIC+3.959 MR+0.569 FS-1.231FE	.993	76.63	.000
CV <i>0</i> /	G.86		M3=81.292647UHM-0.317UI+0.210 SFC-0.356MIC-32.209 MR+0.087FS+1.023 FE	.969	17.70	.007
(V %)	G.90		M₃=27.531-1.091UHM -0.461UI+1.105 SFC-3.261MIC+3.575MR+0.765 FS+4.777FE	.952	11.23	.017
(13)	(Y ₃) G.95		M 3=166.292643 UHM-1.721UI-0.032 SFC+2.073MIC-7.200MR+0.063 FS+1.475FE	.912	5.954	.052
			60's yarn count			
I.e.	G.86		M1=-10518.04+213.766UHM+76.151UI+81.542 SFC-58.381MIC+2928.128MR-26.041FS-199.242 FE	.981	29.70	.003
	G.90		M1=-4946.280+30.303UHM+71.391UI-6.018SFC+74.031MIC+3861.505MR-29.426FS-275.756 FE	.987	43.72	.001
(11)	G.95		M1=10408.307-42.152UHM-112.257UI-59.425 SFC+248.934MIC+1232.380MR+3.092FS+86.720 FE	.973	20.96	.005
	G.86		M ₂ =-31.203+.261UHM+0.617UI-0.406SFC+1.363 MIC+ 13.834 MR -0.509 FS-1.093FE	.977	24.40	.004
SYS	G.90		M2=107.759365UHM-0.350UI-1.608SFC+4.103MIC-43.574MR-0.220FS-1.979FE	.953	11.65	.016
(Y ₂)	G.95		M2=-19.771+1.073UHM-0.158UI+0.082 SFC+1.563MIC+13.358MR+0.249FS-1.482FE	.956	12.51	.014
CT 70/	G.86		M₃=412.697-11.255UHM+0.894UI-5.180SFC+5.192MIC+63.258MR-3.640FS-0.547 FE	.943	9.415	.023
CV%	G.90		M₃=-46.551591UHM+0.316UI+1.541SFC-6.476 MIC+ 26.936MR+0.752FS+3.077FE	.940	8.959	.026
(Y ₃)	G.95		M ₃ =169.063+1.411UHM-1.915UI-0.249SFC-1.101MIC-35.547MR-0.220FS+1.440FE	.964	15.41	.009

Table 4: Multiple linear regression analysis of lea product, Single yarn strength (cN/tex) and Unevenness (cV%) at 40's and 60's yarn count for Giza 86, Giza90 and Giza 95 varieties during 2017.

M1,M2M3 equal Model1, Model2, and Model3

Explanatory variables:-

X1Upper Half Mean Length(UHML)mmX5Maturity Ratio (MR%)X2Length uniformity Percentage (U)%X6Fiber strength (FS g/tex)

X7

X₃ Short Fiber Content(SFC)

X₄ Micronaire value (Mic)

Fiber Elongation (FE %)

Table 5:- Stepwise m	ultiple linear regression	analysis of lea product	, Single yarn strength	(cN/tex) and
unevenness (cV%) at	40's yarn count for Giza	a 86,Giza90 and Giza 95	varieties during 2016	

N C		-	Goodness of fit				
Yarn pro	var.	Prediction equation	R ² %	F Value	Sig.		
		M ₁ =3346 48439 -84 12599 SFC	0.9586	208.4	<.0001		
	G.86	$M_1 = 4834.08400 - 120.06513$ SFC - 155.48972FE	0.9787	184.0	<.0001		
		M ₁ =3895.13634-94.63164 SFC +13.30541 FS -124.87990 FE	0.9833	137.1	<.0001		
Lp		M_1 = -110.96520 + 64.94528FS	0.9544	188.3	<.0001		
(Y ₁)	G.90	M ₁ = 987.76845 -28.15629 SFC+ 39.88926 FS	0.9774	173.2	<.0001		
		M ₁ = 996.75612 -27.35463 SFC+30.97587FS+36.83874FE	0.9867	173.0	<.0001		
		M ₁ = -571.75676+3444.98069MR	0.8937	33.64	0.0001		
	G.95	M ₁ = -1583.89788+22.75788 UI + 2375.40450 MR	0.8937	33.64	0.0001		
		M1=-2294.21846-84.61798UHM+56.84543UI+2815.45826MR	0.9326	32.29	0.0002		
		M ₂ = -10.60939 + 0.61276 FS	0.9744	342.4	<.0001		
	G.86	M ₂ = 1.53162 -0.37741 SFC+ 0.36783 FS	0.9926	534.2	<.0001		
		M ₂ = 6.00454 -0.44919 SFC-5.31047MR+ 0.37868 FS	0.9933	345.6	<.0001		
SVS		M ₂ = -14.53036+6.97190 MIC	0.9435	150.2	<.0001		
(\mathbf{Y}_{1})	G.90	M2= -41.11361+ 1.26063 UHM+ 4.33348 MIC	0.9709	133.4	<.0001		
(12)		M ₂ = -38.57845+ 1.14115 UHM+ 4.17831 MIC+ 0.19111FE	0.9730	84.23	<.0001		
		M ₂ = -39.00955 +1.76138 UHM	0.9531	182.7	<.0001		
	G.95	M ₂ = - 49.08343+1.16216UHM+ 0.33283 UI	0.9663	114.8	<.0001		
		M ₂ = -60.88517+1.40883UHM0.53203UI -2.80135 MIC	0.9822	129.0	<.0001		
		M ₃= 102.37312 -2.60225 UHM	0.9385	137.2	<.0001		
	G.86	M ₃ = 69.41085 -1.63857 UHM+ 0.37482 SFC	0.9567	88.43	<.0001		
		M ₃ = 77.56525 -2.43995 UHM+ 0.64213 SFC+ 0.39155 FS	0.9813	122.5	<.0001		
CV%		M ₃ = 41.09046-5.05813 MIC	0.8873	70.88	<.0001		
(\mathbf{V}_2)	G.90	M ₃ = 52.79608-0.55510 UHM -3.89633 MIC	0.8968	34.77	<.0001		
(13)		M3= 30.94888 -1.70454 UHM+ 0.68325 UI -4.30585 MIC	0.9056	22.38	0.0006		
		M ₃ = 63.09968 -1.44164 UHM	0.8373	46.32	<.0001		
	G.95	M₃= 45.55951 -0.89343 UHM+ 0.19911 SFC	0.8497	22.62	0.0005		
		M₃= 36.69696 -0.79296 UHM+0.33385 SFC+0.64156 FE	0.8570	13.99	0.0024		
Ν	M1, M2M3 equal Model1, Model2 and Model3						
Explanatory variables:-							
X1Upper Half Mean Length(UHML)mmX5Maturity Ratio (MR%)							
X	2 Ler	ngth uniformity Percentage (UI)% X ₆	Fiber strengt	th (FS g/tex)			
X	3 Sho	ort Fiber Content(SFC) X7	Fiber Elonga	tion (FE %)			

 X_4 Micronaire value (Mic)

9

Fiber Elongation (FE %) X7

Table 6:- Stepwise multiple linear regression analysis of lea product, Single yarn strength (cN/t	ex)
and Unevenness (cV%) at 60's yarn count for Giza 86, Giza90 and Giza 95 varieties during 2016.	

•		el		Go	odness of	fit
Yarn properties Var.		mode	Prediction equation	R ²⁰ %	F Value	Sig.
			M ₁ =-3987.17972+207.59230 UHM	0.9542	187.3	<.0001
	G.86		M1= -941.19540+ 118.54065 UHM -34.63617 SFC	0.9791	187.1	<.0001
]	M ₁ =-990.46428+135.23008UHM-38.00192SFC-102.21762MIC	0.9810	120.3	<.0001
Lp			M ₁ = -119.41115 + 567.41665 M IC	0.9335	126.3	<.0001
(Y 1)	G.90		M ₁ = -689.74252 + 369.79088 MIC+ 1619.73032MR	0.9458	69.84	<.0001
			M ₁ = -637.01485+322.29832MIC+1477.16290MR+30.60117FE	0.9549	49.39	<.0001
			M ₁ = 2568.08227 -57.62475 SFC	0.9514	176.2	<.0001
	G.95		M ₁ = -447.68857 + 34.39275 UI -36.05920 SFC	0.9654	111.5	<.0001
			M1=-1423.09983 +37.96375 UI -21.94954 SFC+ 74.91875FE	0.9741	87.90	<.0001
			M ₂ = 18.26354-0.74099 SFC	0.9534	184.2	<.0001
	G.86		M ₂ = -25.45413+0.49807 UI -0.46135SFC	0.9831	232.0	<.0001
			M ₂ = -30.36118 + 0.26742 UHM+ 0.45069UI -0.39687SFC	0.9848	151.5	<.0001
SVS			M ₂ =-57.03149+2.36504 UHM	0.8822	67.43	<.0001
$(\mathbf{Y}_{\mathbf{v}})$	G.90		M ₂ = -42.62203+1.62342 UHM+ 1.86721MIC	0.8999	35.94	<.0001
(12)			M ₂ = -46.43832+ 1.80327UHM+ 2.10080MIC-0.28768 FE	0.9074	22.85	0.0005
			M ₂ = 17.12540 -0.71430 SFC	0.9630	234.2	<.0001
	G.95		M ₂ = 11.93900 -0.63663SFC+ 1.07864 MIC	0.9661	114.1	<.0001
			M ₂ = 6.59200 -0.54659 SFC+ 1.48749 MIC+ 0.38247FE	0.9672	68.82	<.0001
			M ₃ = 14.07588+0.95512 SFC	0.9194	102.6	<.0001
	G.86		M ₃ = -48.04117 + 0.70769 UI + 1.35246 SFC	0.9541	83.13	<.0001
			M₃= -29.16679 -1.02861 UHM+ 0.88994 UI + 1.10444SFC	0.9693	73.79	<.0001
CV /9/			M ₃ =38.86615-4.34827MIC	0.9080	88.85	<.0001
(\mathbf{V}_{n})	G.90		M ₃ = 51.53851-0.60095UHM -3.09052MIC	0.9234	48.25	<.0001
(13)			M₃=31.75515-1.64180UHM+ 0.61871UI-3.46135MIC	0.9334	32.69	0.0002
			M ₃ = 18.57045 + 0.40828 SFC	0.7467	26.52	0.0006
	G.95		M ₃ = -1.27888+ 0.67267 SFC+ 21.78588 MR	0.7847	14.58	0.0021
			M ₃ = -11.45921 + 0.84980 SFC + 23.05874MR + 1.02043FE	0.8104	9.970	0.0064
Μ	I1, M2M3 equ	ual Mo	del1, Model2 and Model3			

Explanatory variables :-

-	
X_1	Upper Half Mean Length(UHML)mm

X2	Length uniformity Percentage (UI)%	X_6	Fiber
		• •	

X3Short Fiber Content(SFC)X4Micronaire value (Mic)

X₅ Maturity Ratio (MR%)

X₆ Fiber strength (FS g/tex)

X₇ Fiber Elongation (FE %)

Table 7:- Stepwise	e multiple linea	r regression a	analysis of lea	product,	Single yarn	strength	(cN/tex)
and Unevenness (cV%) at 40's yarı	n count for Gi	za 86,Giza90 a	nd Giza 9	5 varieties du	ring 2017	

Yarn properties Var.		el	Go	Goodness of fit			
		Prediction equation	D 20/	F	C'		
		Ĕ.	K ² %	Value	S1g.		
		M ₁ = -2547.74119+170.20861 UHM	0.9626	231.87	<.0001		
	G.86	M ₁ = -3200.06041+138.71319 UHM + 19.76131 UI	0.9678	120.05	<.0001		
		M ₁ = -6153.30137+185.50081UHM+34.64820UI+36.37402SFC	0.9771	99.66	<.0001		
Lp		M ₁ = 2597.20712-53.45089 SFC	0.9431	149.2	<.0001		
(\mathbf{Y}_{1})	G.90	M ₁ = 931.73214 + 18.96998 UI -42.53986 SFC	0.9465	70.80	<.0001		
		M1= 1975.06010-56.45189 UHM+ 26.99630 UI -51.54545 SFC	0.9503	44.62	<.0001		
		M ₁ = 2594.53901 -42.14010 SFC	0.9800	441.7	<.0001		
	G.95	M ₁ = -535.63034+ 36.28421 UI -26.91593 SFC	0.9872	309.5	<.0001		
		M1= -588.43859+ 29.33992 UI -20.35803 SFC+ 704.35534 MR	0.9892	213.4	<.0001		
		M ₂ = -42.31511+1.77248 UHM	0.9686	277.7	<.0001		
	G.86	M ₂ = -17.80378 + 1.07040 UHM -0.36216 SFC	0.9799	195.0	<.0001		
		M ₂ = -2.92328 -0.40341 SFC 2.32412 MIC+ 1.10479FE	0.9898	227.1	<.0001		
61 /6		M ₂ = 17.68634 -0.68761 SFC	0.9307	120.8	<.0001		
SYS	G.90	M ₂ = 86.45627 -0.78330 UI -1.13814 SFC	0.9651	110.6	<.0001		
(Y ₂)		M ₂ = 90.84508 -0.74280 UI -1.20285 SFC -0.89771FE	0.9701	75.82	<.0001		
		M ₂ = 2574.66045 -53.29698 SFC	0.9338	127.0	<.0001		
	G.95	M ₂ = 9600.50103 -81.44194 UI -87.46848 SFC	0.9555	85.83	<.0001		
		M ₂ = 10441 -100.73748 UI -84.35896 SFC+ 88.35247FE	0.9666	67.52	<.0001		
		M ₃ = 77.26378 -69.77041 MR	0.9399	140.7	<.0001		
	G.86	M ₃ = 95.66610 -0.45018 UI -46.80569 MR	0.9590	93.49	<.0001		
		M ₃ = 75.21487 -0.31468 UI+ 0.25661 SFC -37.79606 MR	0.9623	59.61	<.0001		
		M ₃ = 17.27069 + 0.51115 SFC	0.8840	68.57	<.0001		
CV% (Y3)	G.90	M ₃ = 0.72167+ 0.69447 SFC+ 1.86997FE	0.9223	47.46	<.0001		
		M₃= -7.13089+ 0.85509 SFC+ 0.10315FS+2.23731FE	0.9261	29.22	0.0002		
		M ₃ = 139.96865 -1.43930 UI	0.8850	69.24	<.0001		
	G.95	M ₃ = 156.52692 -1.74035 UI+ 1.01089FE	0.8953	34.21	0.0001		
		M₃= 185.70046 -2.15932 UI+ 1.69109 MIC+ 0.91940FE	0.8998	20.95	0.0007		
_	M ₁ ,M ₂ M ₃ equal Model ₁ , Model ₂ and Model ₃						
	Explanatory variables :-						
	X_1	Upper Half Mean Length(UHML)mm X5	Maturity Ratio (MR%)				
	X2	Length uniformity Percentage (UI)% X ₆	Fiber str	Fiber strength (FS g/tex)			
	X3	Short Fiber Content(SFC) X7	Fiber Elongation (FE %)				
	X_4	Micronaire value (Mic)					

Younes et al.

Table 8:- Stepwise multiple linear regression analysis of lea product,	Single yarn strength (cN/tex)
and Unevenness (cV%) at 60's yarn count for Giza 86,Giza90 and Giza 9	5 varieties during 2017.

Yarn properties Var.		7				Goodness of fit			
		ode	Prediction equation			D •0/	F		
		n				R ² %	Value	Sig.	
Lp			M ₁ =-1785.71213+139.323	13 UHM		0.8600	55.27	<.0001	
	G.86		M ₁ = -4675.13451+222.08503 UH	M+ 42.69185	SFC	0.8825	30.05	0.0002	
			M ₁ =-9029.70128+193.54202UHM+60.	35966 UI+ 77.5	9239 SFC	0.9311	31.54	0.0002	
			\mathbf{M}_{1} = -1009.86239 + 3720.2	18349 MR		0.9460	157.54	<.0001	
(Y ₁)	G.90		M1= -3343.95998+ 43.89943 UI+	2120.70229 N	ИR	0.9691	125.2	<.0001	
			M ₁ = -2989.23859+43.95338UI+3026.6	4424 MR -137.	17494 FE	0.9818	126.0	<.0001	
			M ₁ = 2574.66045-53.296	98 SFC		0.9338	127.0	<.0001	
	G.95		M1= 9600.50103 -81.44194 UI	-87.46848 SF	С	0.9555	85.83	<.0001	
			M ₁ =10441-100.73748UI-84.35896	SFC+88.3524	17FE	0.9666	67.52	<.0001	
CVC			$M_2 = -12.61460 + 5.9179$	98 MIC		0.9426	147.8	<.0001	
	G.86		M ₂ = -18.29823 + 4.14048 MIC	+ 16.32284 M	R	0.9552	85.19	<.0001	
			M ₂ = -30.71047+ 0.24406 UI+ 3.04236	MIC+ 12.662	248 MR	0.9616	58.44	<.0001	
			M ₂ = 16.99875 -0.5993		0.8548	52.98	<.0001		
$(\mathbf{Y}_{\mathbf{v}})$	G.90		M ₂ = 45.46091 -0.91467 SFC -3.21610FE				57.03	<.0001	
(12)			M ₂ = 58.25156-1.14557 SFC -19.345	529 MR -2.595	519 FE	0.9418	37.79	0.0001	
			M_2 = -107.52555 +1 1.45	5103 UI		0.9148	96.60	<.0001	
	G.95		M ₂ = -140.61752+ 2.05268 U	I -2.02029FE		0.9568	88.50	<.0001	
			M ₂ = -97.27323+ 1.43947 UI+ 0.26	596 FS -2.1703	4FE	0.9706	76.99	<.0001	
			M ₃ = 109.95638 -2.86766 UHM			0.7046	21.47	0.0012	
	G.86		M ₃ = 240.93302 -6.61923 UHN	С	0.7942	15.43	0.0018		
			M ₃ = 424.31864 -8.33356 UHM -5.09	701 SFC -2.63	3661 FS	0.9145	24.97	0.0004	
CV/0/			M ₃ = 17.53268 + 0.54635 SFC			0.8717	61.13	<.0001	
(Y ₃)	G.90		M ₃ = -22.92712 + 0.46084 UI+	0.81141 SFC		0.8893	32.15	0.0001	
			M₃= -38.51008+ 0.43679 UI+ 1.07992	2 SFC+ 18.720	040 MR	0.9012	21.28	0.0007	
			M ₃ = 129.20691 -1.30108 UI			0.8820	67.28	<.0001	
	G.95		M ₃ = 160.43998 -1.86892 UI+1.90680FE			0.9269	50.69	<.0001	
			M₃= 124.92791 -1.24214 UI -23.97520 MR+ 2.28700FE			0.9440	39.30	<.0001	
M1, M2M3 equal Model1, Model2 and Model3									
Explanatory variables: -									
Х	X ₁ Upper Half Mean Length(UHML)mm			X5	Maturity Ratio	(MR%)			
X ₂ Length uniformi			uniformity Percentage (UI)%	X_6	Fiber strength	(FS g/tex)			

Length uniformity Percen Short Fiber Content(SFC)

 X_3 X_4 Micronaire value (Mic)

Fiber strength (FS g/tex) Fiber Elongation (FE %) X7

تقدير القيمة التكنولوجية لبعض أصناف القطن المصري الطويلة باستخدام بعض نماذج التحليل الرياضي أشرف فتحي يونس ¹, محمد شيرين سالم ², والسيد عبد الله مصباح ² ابراهيم احمد عبيدو ¹, عبد الباسط عبد الكريم حسان ³. ¹قسم الرتب- معهد بحوث القطن- مركز البحوث الزراعية بالجيزة ²قسم المحاصيل كلية الزراعة بالقاهرة - جامعة الأزهر ³قسم الغزل - معهد بحوث القطن - مركز البحوث الزراعية بالجيزة

* البريد الإليكتروني للباحث الرئيسي:Mohamed sherien 205@azhar.edu.eg

الملخص العربى

أجريت هذه الدراسه بمعامل تكنولوجيا القطن وقسم الرتب التابعه لمعهد بحوث القطن- مركز البحوث الزراعية - الجيزة- مصر، ووحدات تصنيع الغزل بمنيا القمح محافظة الشرقية- مصر- وذلك لبحث العلاقة فيابين صفات الألياف المختلفة وصفات الخيط الناتج (متانة الشلة ومتانة الخيط المفرد والنسبة المئوية للانتظامية) بالغزل عند نمرتي الخيط (40 ، 60) وعند معامل البرم 3.6 لأصناف القطن الطويلة (جيزة 86 ، جيزة 90، جيزة 95) ولبيان هذه العلاقة استخدم 4 نماذج رياضية وهم معامل جودة الألياف، ودليل ملائمة الغزل، ومعامل الخصم والإضافة، والتحليل الهرمي التسلسلي. وأظهرت النتائج عند قياس القيم التكنولوجية لصنف جيزة 86، وجيزة 95 على سبيل المثال ارتباطها الموجب العالي المعنوية، بكل من: متانة الشلة ومتانة الخيط المفرد. وعلى العكس كان هذا الارتباط سالباً مع صفة النسبة المئوية للانتظامية. وتبين أن كلاً من محتوى الصنف من الشعيرات القصيرة ومتانة الليفة، وقيم الميكرونير هي أهم صفات الألياف المساهمة في صفات جودة الخيل، ومعامل الحصم والإضافة، والتحليل الهرمي التسلسلي. وأظهرت النتائج ومتانة المنوبية المنابية معامل جودة 80، وجيزة 95 على سبيل المثال ارتباطها الموجب العالي المعنوية بكل من: متانة الخيط المورد. وعلى

الكلمات الاسترشادية: القطن، القطن المصري الطويلة, القيمة التكنولوجيا، نماذج التحليل الاحصائي.